GRAEME CAMPBELL & ASSOCIATES PTY LTD

Specialists in Materials Characterisation

Integrated Geochemical and Physical Testing Service for Bedrocks, Regoliths and Soils of Diverse Lithological, Alteration and Weathering Assemblages

P.O. Box 247, Bridgetown, Western Australia 6255 Phone: (61 8) 9761 2829 E-mail: <u>gca@wn.com.au</u> ACN 061 827 674 ABN 37 061 827 674

Testing Laboratory: Unit B, 15 Rose Street, Bridgetown, WA 6255

1901/1

COMPANY:	Audalia Resources Limited
ATTENTION:	Geoffrey Han

FROM: Graeme Campbell

SUBJECT:

Medcalf Project: Characterisation of Mine-Waste Samples from Vesuvius, Fuji, Egmont, and Pinatubo Pits – Implications for Mine-Waste Management

NO. PAGES (including this page):	185	DATE:	24th March 2020
----------------------------------	-----	-------	-----------------

Geoffrey,

The testwork results obtained in this study are presented in Tables 1-8.

Photographs of the samples received for testing, and various testing procedures, are shown on **Plates 1-9**.

An overview of the geology of the Vesuvius, Fuji, Egmont, and Pinatubo Deposits, is presented in **Attachment A**.

The proposed Vesuvius, Fuji, Egmont, and Pinatubo Pits are "Oxide-Only" Pits with production of waste-regolith streams predominantly from the following Waste-Zones:

- <u>Mottled-Zone</u> which may locally be up to 10-15 m bgl
- <u>Saprolite-Zone</u> extending to pit-floors at *ca*. 50 m bgl

The satellite Egmont and Pinatubo Pits are shallower than the Vesuvius and Fuji Pits.

For all Pits, the top 4-5 m (nominal) of the Mottled-Zone variously comprises 'Fe-rich' colluvium, conglomerate and laterite. Occurrences of pisolitic-gravels are also common.¹

This **Upper-Mottled-Zone** is an important resource of a blocky, hard mining stream for fill and other infrastructure demands at Project start-up, and physical-stabilisation applications when the site is decommissioned and rehabilitated (e.g. cladding the outer-slopes of the tailings-storage facility [TSF], construction of pit-abandonment bunds, etc.).

Details of the sampling programme undertaken for the samples tested this study are presented in Attachment B.

The **23** samples (as 3m-composites) tested herein were chosen following review of %S 'hits', and other assays, in the Project's geological database.²

Copies of the laboratory reports are presented in Attachment C.

1.0 TESTWORK OUTCOMES FOR MOTTLED-ZONE SAMPLES

1.1 pH and Salinity

The samples were typically acidic with pH-(1:2) values of 3.7-4.8 (Table 1).³

One of the samples derived from Gabbro (GB) had a pH-(1:2) value of 8.4, due to 'trace-carbonates'.

All samples were saline with EC-(1:2) values of 2.18-7.47 mS/cm.⁴

The salinity (chiefly halite, NaCl) reflects local and regional lacustrine influences, and the natural acidic state reflects the 'heavily-weathered/leached' nature of the sesquioxides ('resistates'), especially Fe/Al-oxyhydroxides, that predominate in the Mottled-Zone.

1.2 Acid-Forming Tendency

All samples contained 'negligible-sulphides' (viz. Sulphide-S \leq 0.005 %), and are thus classified as <u>Non-Acid Forming (NAF)</u> [Table 1].

Acid-Neutralisation-Capacity (ANC) values were typically 1 kg H₂SO₄/tonne.

The circum-neutral (GB-derived) sample ARD_004 from the Vesuvius Pit had a CO_3 -C value of 0.16 %, and a Bulk-ANC value of 12 kg H₂SO₄/tonne, reflective of 'trace-carbonates'.

¹ Though the photographs shown in **Attachment A** are for outcropping <u>mineralised</u> massive conglomerate, they are also representative of the hard, physical *in situ* state of the <u>unmineralised</u> (i.e. 'waste') conglomerate.

² No samples from the satellite Egmont and Pinatubo Pits were tested in this study. However, the geology of the Mottled-Zone and Saprolite-Zone in these Pits is essentially identical to that for the Vesuvius and Fuji Pits. Of the 23 samples tested, 5 were Fresh-Zone-Basalt samples from the Vesuvius Pit, and near the Pinatubo Pit, which serve as 'model-samples' for the this Fresh-Zone unit to be produced from the borrow-pit to be developed for TSF construction (Section 3.0).

³ Refer footnotes to **Table 1** for the definition of pH-(1:2), etc.

⁴ EC = Electrical-Conductivity.

1.3 Multi-Element Composition

The samples were characterised by minor-element contents either below, or close to, those typically recorded for soils, regoliths, and bedrocks derived from non-mineralised terrain (**Table 2**).

Though variously enriched in Se and Bi, the degree of enrichment was <u>not</u> marked, and falls within the range typically recorded for waste-regoliths at hard-rock mines located within the Yilgarn block (Campbell, unpublished results since the late-1980s).

The Fe and Al contents were each 10+ %, and attest to abundant Fe/Al-oxyhydroxides in accord with the 'resistate' nature of the Mottled-Zone (i.e. 'weathering-end-members').

1.4 Solubility Characteristics

1.4.1 Water-Extraction Testwork

The results of the water-extraction testwork, corresponding to a solid:water ratio of ca. 1:2 (w/w), are presented in Table 3.

The water-extracts were characterised by minor-element concentrations either below, or near, the respective detection-limits (0.1-1 μ g/L range typically).

Despite being variously acidic, the water-extract-Al concentrations were constrained, and ranged up to 1.6 mg/L.

1.4.2 Saturated-Leaching Columns

Solubility behaviour was investigated further using saturated-leaching columns (SLCs), as shown on **Plate 9**.

Leachate-assays are presented in Table 4.

The key findings from the SLC testing are that:

- (a) salinity is rapidly depleted during leaching with an increasing trend in pH
- (b) Al solubility is closely tied to salinity, and swiftly drops from the multimg/L range initially, to the sub-mg/L range as leaching progresses
- (c) soluble-Zn forms are present initially, but are swiftly eluted during leaching. The 'pools' of such soluble-Zn forms are within the 5-10 mg/kg (dry-solids basis) range, and thus constrained.

The above trends in (a) to (c) reflect a combination of (interacting) cation-exchange reactions (e.g. stripping of exchangeable-Al by Na [at *ca.* 0.1 M activity], and hydrolysis of released Al), and the pH-dependent, variable-surface-charge characteristics of the sesquioxides which are also influenced by ionic-strength (salinity) variations.

Such interdependent physicochemical properties of the Mottled-Zone reflects <u>both</u> its 'type-mineralogy' (i.e. 'sesquioxide-rich'), <u>and</u> elevated salinity, courtesy of lacustrine influences.

1.5 Physical Characteristics

Physical testing of the 'fine-earth' (-2 mm) fractions was undertaken to assess the tendency for clay / sesquioxide dispersion of the 'soil-like' (earthy) component of the Mottled-Zone samples.

<u>Emerson-Dispersion (ED) testing</u> of wet-sheared 'soil-balls' was performed on <u>both</u> the 'fine-earth' fractions, as obtained directly via dry-sieving, <u>and</u> following leaching with deionised-water to remove excess soluble-salts (chiefly halites).⁵

The ED testing showed that the samples resisted dispersion of clays / sesquioxides when aggregates were immersed in deionised-water, and thus subjected to marked osmotic-stress. The samples had an Emerson Class Number of 6 (**Table 5**).⁶

The 'fine-earth' fractions were characterised by <u>Exchangeable-Al</u> contents of 0.04-1.21 cmol(+)/kg, and <u>Total-Exchangeable-Acidity</u> values of 0.34-1.81 cmol(+)/kg (**Table 5**). When expressed in units of kg H₂SO₄/tonne, the Total-Exchangeable-Acidity values ranged up to *ca*. 1 kg H₂SO₄/tonne (i.e. low 'H₂SO₄-equivalent' loadings). Thus, though the Mottled-Zone samples were typically naturally acidic, their intrinsic acidity levels are tightly constrained, reflective of Al-hydroxy species sorbed to sesquioxide-surfaces.

2.0 TESTWORK OUTCOMES FOR SAPROLITE-ZONE SAMPLES

2.1 pH and Salinity

All samples were circum-neutral with pH-(1:2) values of 6-8 (Table 1).

Salinities ranged from moderate to extreme (e.g. the Ultramafic-derived sample ARD_012 from the Vesuvius Pit had an EC-(1:2) value of 19.2 mS/cm).

Overall, the Saprolite-Zone samples were appreciably saline.

2.2 Acid-Forming Tendency

All samples contained 'negligible-sulphides' (viz. Sulphide-S ≤ 0.007 %), and thus classified as <u>NAF</u> (Table 1).

The Bulk-ANC values were typically 2 kg H₂SO₄/tonne.

2.3 Multi-Element Composition

Though variously enriched in Cu, Ni, Cr, Co, and Bi, the degree of enrichment was <u>not</u> marked. The modest enrichments in at least Ni, Cr, and Co reflect ultramafic influences.

2.4 Solubility Characteristics

The water-extracts were characterised by minor-element concentrations either below, or near, the respective detection-limits (0.1-1 μ g/L range typically) [**Table 3**].

⁵ Photographs taken during the ED testing are contained in the GCA-test-report presented in **Attachment** C.

⁶ Refer footnotes to **Table 5** for the definition of Emerson Class Number.

2.5 Physical Characteristics

The <u>effective-Cation-Exchange Capacity (eCEC)</u> values were 8-50 cmol [+]/kg, and the <u>Exchangeable-Sodium-Percentage (ESP)</u> values were 47-65 % (**Table 5**).

The tested Saprolite-Zone samples were therefore appreciably sodic, as expected from their elevated salinity generally.

The samples subjected to ED testing were typically highly dispersive with Emerson Class Numbers of either 1 or 2 (**Table 5**). Such testing used intact, dry aggregates (2-5 mm nominal) that survived the drilling and sample-preparation treatments.

The presence of 'swelling-clays' (smectites) was readily apparent during the execution of other testwork, as shown on **Plates 3**, 7 and $8^{.7}$

3.0 TESTWORK OUTCOMES FOR FRESH-ZONE-BASALT SAMPLES: SUPPLEMENTARY MATERIALS EARMARKED FOR CONSTRUCTION OF TAILINGS-STORAGE FACILITY (TSF)

During the refinement of the mining and construction schedule for the Project, a need for additional sources of regolith and bedrock materials for TSF construction was identified.

An area of *ca*. 850 m in length, and *ca*. 100 m in width, located just to the south-west of the Vesuvius Pit has therefore been earmarked as a borrow-pit with a depth of *ca*. 20 m as a supplementary source of TSF-construction materials. Save for being below economic mineralisation, the geology of the borrow-pit area is similar to that of the various Pits.

The borrow-pit profile comprises:

- (a) 0-5 m (nominal) of Saprolite-Zone (derived from Basalt, BAS)
- (b) 5-25 m (nominal) of Fresh-Zone-Basalt

The <u>Saprolite-Zone</u> in (a) will therefore have characteristics similar to samples ARD_006 and ARD_007 tested herein (**Tables 1-3**).

Testwork results for <u>Fresh-Zone-Basalt</u> samples (viz. samples ARD_021 to ARD_025) are presented in **Tables 6-8**. Samples ARD_021 to ARD_024 are derived from the Vesuvius Pit, and sample ARD_025 is derived from just outside the Pinatubo Pit.

The Fresh-Zone-Basalt samples are geochemically benign (i.e. NAF [$\leq 0.01\%$ S], bereft of element-enrichments, and interact feebly with water).

Sample ARD_022 (MRC125, 47-50 m) was subjected to mineralogical assessment by CSIRO Land and Water (Adelaide).⁸ Amphibole predominated with subordinate anorthite. Accessory amounts of quartz, and traces of kaolinite and smectite, also occurred. Given the occurrence of 'trace-smectite' in this 'deep-sample' of the Fresh-Zone-Basalt, there is the possibility that smectites may be more abundant in this unit at shallower depths (e.g. borrow-pit development). It is therefore recommended that, during the forward-works programme for the Project, the Fresh-Zone-Basalt to be produced

⁷ It is understood that smectite occurrences in the Saprolite-Zone are also evident from the appearance of stored drillcore, especially during wet-spells when the relative-humidity of the air is elevated.

⁸ The CSIRO-report in Attachment C includes the powder X-ray diffraction traces, etc.

from the borrow-pit is assessed for its physical suitability (or otherwise) for cladding, and other applications, where exposure will occur over the longer-term.

4.0 MANAGEMENT IMPLICATIONS

4.1 Relative Proportions of Mine-Waste Streams

Although the mining plan is currently being refined, it is understood that the total amount of mine-waste to be produced from each pit is projected to be:

- *ca.* 1.07 million tonnes from the Vesuvius Pit
- *ca.* 1.36 million tonnes from the Fuji Pit
- *ca.* 0.10 million tonnes from the Egmont Pit
- *ca.* 0.26 million tonnes from the Pinatubo Pit

The total of *ca*. 2.79 million tonnes of mine-waste produced from all Pits is estimated to comprise:

- *ca.* 66 % from the Mottled-Zone
- *ca.* 34 % from the Saprolite-Zone

The demand of materials required for the construction and rehabilitation of the TSF means that there will be no waste-rock dump (WRD) for the Project.⁹

No LG-ores are planned to be stockpiled.

4.2 Upper-Mottled-Zone (0-5 m nominal)

The mining stream derived from the <u>Upper-Mottled-Zone</u> (0-5 m nominal) is projected to correspond to around one-half of the total amount of mine-waste from the Mottled-Zone overall (i.e. tonnes from the Upper-Mottled-Zone *ca.* 33 % of the total amount of mine-wastes produced from all Pits). This mining stream therefore corresponds to a sizeable fraction of the total mine-waste volume for the Project.

Though variously moderately-acidic (pH 3-5 range), and saline, the 'soil-like' (earthy) fraction of the <u>Upper-Mottled-Zone</u> is stable against clay / sesquioxide dispersion, and thus reduced erosion risks when located on sloped-surfaces. The overall blocky / rocky nature of this mining stream means that it will be useful for managing the Saprolite-Waste-Zone streams which **are** susceptible to erosion.

In terms of acidity and salinity the Upper-Mottled-Zone *in situ* is the natural substrate beneath the surficial-soil profiles across the various Project areas (viz. Pits, TSF, etc.). Use of the mining streams from the Upper-Mottled-Zone in rehabilitation works is therefore broadly reconfiguring the soil/substrate profile pre-mining.

The 'Fe-rich' streams (viz. laterites, colluvium, conglomerate, and pisolitic-gravels) within the <u>Upper-Mottled-Zone</u> need to be segregated and stockpiled. Though a portion

⁹ The borrow-pit to be developed for TSF construction provides an option for selective pit-backfilling, if required, for management of mine-waste produced from the Vesuvius, Fuji, Egmont, and Pinatubo Pits.

of these mining streams will be employed in the initial site-wide earthworks as inert fill and infrastructure preparation, and TSF construction, <u>sufficient volumes need to be</u> <u>stockpiled to meet the demands of subsequent decommissioning and rehabilitation works</u>.

4.3 Oxide-Waste-Zone

Apart from salinity (NaCl), there are <u>no geochemical concerns</u> associated with the mining streams to be produced from the Oxide-Waste-Zones of all Pits.

However, marked sodicity, and the prominence of 'swelling-clays' (smectites), mean that the mining streams produced from the Oxide-Waste-Zones are highly erosive with ensuing implications for physical stability post-decommissioning.

4.3.1 Lower-Mottled-Zone

The mining streams from the Lower-Mottled-Zone should not be as physically stable as those from the Upper-Mottled-Zone, due to increasing clay content, and decreasing ferruginisation, with depth.

Mining streams from the Lower-Mottled-Zone may therefore pose erosion risks if they reside within the outer-sections of the TSF's (sloped) outer-embankments. However, an engineering assessment would be required to fully evaluate this possibility.

4.3.2 Saprolite-Zone

Due to their erosive nature (sodic, saline, and smectitic), the mining streams derived from the Saprolite-Zone not reside within the outer-sections of the TSF's (sloped) outer-embankments.

5.0 CLOSING

Since the Medcalf Project will <u>not</u> have a WRD, mine-waste management rests with the construction, operation and decommissioning of the TSF comprising largely Mottled-Zone-Waste, and Oxide-Zone-Waste (e.g. saprolites) where the latter are susceptible to erosion.

Physical stabilisation of the outer-slopes of the TSF is therefore a key demand for the Medcalf Project.

For all Pits, mining streams derived from the <u>Upper-Mottled-Zone (0-5 m nominal)</u> are key resources for physical stabilisation of the final TSF-landform, pit-abandonment bunds, etc.

I trust the above is useful to you.

Regards,

Dr GD Campbell Director

encl. Tables 1-8 (some formatted for A3-sized paper) Plates 1-9 Attachments A-C TABLES

Graeme Campbell & Associates Pty Ltd

ID INTERVAL (m) [mS/cm] (%)	Cr(II)- REDS (%)	TOTAL-C (%)	CO3-C (%)	CARB ANC (calc'd) kg H2S(BULK- ANC D4/tonne	AFP CATEGORY
GCA GCA GLS	505	GLS	GLS		GCA	
MOTTLED.ZONE						
ARD 001 Vesuvius MDD010 6-9 UM 4.8 3.03 0.18	<0.005	0.13	0.08		1	NAF
ARD 004 MRC127 0-3 GB 8.4 2.39 0.05	< 0.005	0.21	0.16	13	12 (12)	NAF
ARD 005 MRC130 1-4 4.0 3.68 0.07	< 0.005	0.12	0.07		1(1)	NAF
ARD 006 MRC125 1-4 BAS 3.7 4.14 0.17	< 0.005	0.16	0.09		1	NAF
ARD 007 14-15 3.7 7.47 0.14	< 0.005	0.11	< 0.01		-1	NAF
ARD_002 Fuji MRC137 0-3 UM 3.9 2.18 0.12	< 0.005	0.25	0.13		1	NAF
ARD_003 MRC139 20-23 4.3 4.01 0.15	< 0.005	0.08	0.02		<1	NAF
SAPROLITE-ZONE						
ARD_008 Vesuvius MDD010 17-20 UM 6.7 9.69 0.10	< 0.005	0.08	0.02	2	2 (2)	NAF
ARD_012 MDD006 21-24 6.0 19.2 0.12	< 0.005	0.11	0.05	4	2	NAF
ARD_013 58-60.8 6.8 9.24 0.05	< 0.005	0.04	< 0.01	<1	2	NAF
ARD_014 MDD009 36-39.2 6.9 6.93 0.04	< 0.005	0.02	< 0.01	<1	2 (2)	NAF
ARD_017 MRC127 12-15 GB 7.2 1.63 0.02	< 0.005	0.02	< 0.01	<1	2	NAF
ARD_018 MRC130 15-18 5.7 1.74 0.03	0.006	0.07	0.03	2	2	NAF
ARD_019 MRC125 25-28 BAS 5.6 5.85 0.12	0.007	0.09	< 0.01	<1	2	NAF
ARD 020 39-42 6.8 (6.8) 3.13 (3.05) 0.02	< 0.005	0.06	< 0.01	<1	2	NAF
ARD_009 Fuji MRC137 12-15 UM 5.3 5.92 0.08	< 0.005	0.12	0.03	2	1	NAF
ARD_010 27-30 6.7 (6.7) 4.30 (4.37) 0.06	< 0.005	0.06	< 0.01	<1	2	NAF
ARD_011 41-44 7.5 2.4 0.03	< 0.005	0.18	< 0.01	<1	3	NAF

Table 1: Acid-Base-Analysis Results for Mine-Waste Samples (Vesuvius and Fuji Pits)

Notes:

EC = Electrical-Conductivity; ANC = Acid-Neutralisation Capacity; AFP = Acid-Formation Potential; NAF = Non-Acid Forming.

pH-(1:2) and EC-(1:2) values correspond to pH and EC measured on sample slurries prepared with deionised-water, and a solid:solution ratio of ca. 1:2 (w/w).

All results expressed on a dry-weight basis, except for pH-(1:2), and EC-(1:2).

Values in parentheses represent duplicates.

Calculated Carbonate-ANC (Carb.-ANC) values assume that all CO3-C is associated with Ca/Mg-carbonates (i.e. 'non-ferroan-carbonates'). Carbonate-ANC values not calculated for the acidic-Mottled-Zone samples.

Geo-Codes:	UM	Ultramafic
	GB	Gabbro
	BAS	Basalt

Table 2:	Multi-Element-Anal	vsis Results	for Mine-W	aste Samples	(Vesuvius	and Fuji Pits)
		,		-	•	v ,

SAMPLE_	PIT	DRILLHOLE_	DOWNHOLE-			S	Ca	Mg	K	Na	Fe	Al	Si	Ti	As	Sb	Se	Mo	В	F	Ni	Cr
ID		ID	INTERVAL	LITHOLOGY	AFP	% //															1	
			(m)			%0									mg/k	g			mg/l	kg		
MOTTLED-ZO	DNE																					
ARD_001	Vesuvius	MDD010	6-9	UM	NAF	0.18	0.01	0.13	0.02	0.14	34	8.0	7.6	1.4	2	0.1	3.33	2.1	<20	471	320	680
ARD_004		MRC127	0-3	GB	NAF	0.05	0.38	0.19	0.16	0.20	17	12	1.7	1.3	4	0.2	1.05	7.1	75	242	93	80
ARD_005		MRC130	1-4		NAF	0.07	0.02	0.09	0.21	0.20	8.7	15	2.2	2.4	<1	0.2	1.02	2.9	50	251	71	75
ARD_006		MRC125	1-4	BAS	NAF	0.17	0.03	0.06	0.07	0.19	20	13	1.6	2.3	1	0.2	1.61	43	40	281	250	370
ARD_002	Fuji	MRC137	0-3	UM	NAF	0.02 0.09 0.11 0.14 22 11 17 0						0.46	2	< 0.1	2.41	6.6	35	241	280	620		
SAPROLITE-Z	CONE																					
ARD 013	Vesuvius	MDD006	58-60.8	UM	NAF	0.05 0.11 2.7 0.10 0.65 27 1.0 1.8								0.29	<1	< 0.1	0.08	1.9	<20	167	2,800	270
ARD_019		MRC125	25-28	BAS	NAF	0.12	0.10	0.77	0.15	0.55	16	7.8	1.9	0.71	<1	< 0.1	0.12	3.2	<20	229	1,700	700
ARD_011	Fuji	MRC137	41-44	UM	NAF	0.03	4.5	7.0	0.34	0.67	15	3.8	2.2	1.1	<1	< 0.1	0.99	11	<20	494	2,200	1,900
							Ave	erage-Ci	rustal A	bundan	ce (Bow	en 1979)		1.5	0.2	0.05	1.5	10	950	80	100
SAMPLE	PIT	DRILLHOLE	DOWNHOLE-			Cu	Zn	Cd	Pb	Hg	Со	Mn	Ag	Bi	Р	Sr	Ba	Sn	V	Tl	Th	U
ID –		ID –	INTERVAL	LITHOLOGY	AFP																	
			(m)											mg/kg								
MOTTLED-ZO	DNE																					
ARD_001	Vesuvius	MDD010	6-9	UM	NAF	960		< 0.1	16	0.02	54	600	0.4	1.5	100	1.9	9	0.8	370	< 0.2	3.6	1.0
ARD_004		MRC127	0-3	GB	NAF	290	15	< 0.1	22	0.01	46	110	0.2	1.7	<20	39	54	0.9	970	< 0.2	3.9	0.76
ARD_005		MRC130	1-4		NAF	100	18	< 0.1	9	< 0.01	12	160	<0.1	6.2	35	5.3	51	1.2	800	0.2	1.8	0.33
ARD_006		MRC125	1-4	BAS	NAF	630	63	<0.1	10	0.01	29	160	< 0.1	4.8	70	5.0	34	1.1	740	< 0.2	1.4	0.59
ARD_002	Fuji	MRC137	0-3	UM	NAF	480	97	<0.1	9	0.01	27	100	0.3	0.7	50	6.1	54	0.6	370	< 0.2	1.9	0.61
SAPROLITE-Z	<u>CONE</u>																					
ARD_013	Vesuvius	MDD006	58-60.8	UM	NAF	1,300	330	0.5	2	0.01	390	3,700	0.3	1.1	140	7.7	4	0.7	86	< 0.2	0.68	0.09
ARD_019		MRC125	25-28	BAS	NAF	1,000	220	0.1	4	0.01	1,400	8,200	0.7	0.4	100	19	440	1.0	300	2.2	0.42	0.13
ARD_011	Fuji	MRC137	41-44	UM	NAF	1,900	130	0.7	11	0.01	180	2,000	1.4	3.1	240	47	48	1.9	300	0.8	1.5	0.31
			Average	Crustal Abunda	ance	50	75	0.11	14	0.05	20	950	0.07	0.05	1,000	370	500	2.2	160	0.6	12	2.4
			(H	Bowen 1979)																		

	Geo-Codes:	
--	------------	--

UM Ultramafic GB Gabbro Basalt BAS

signifies element content 10-100 times average-crustal abundance signifies element content 100+ times average-crustal abundance

Reference: Bowen HJM, 1979, "Environmental Chemistry of the Elements", Academic Press, New York

Table 3: Water-Extraction-Testwork Results for Mine-Waste Samples (Vesuvius and Fuji Pits)

SAMPLE_	PIT	DRILLHOLE_	DOWNHOLE-			pН	pH	EC	EC A	cidity	HCO3	CO3	Cl	SO4	F	Ca	Mg	K	Na	Fe	Al	Mn	Si r	eactSi	As	Sb	Se	Mo	B
ID		ID	INTERVAL	LITHOLOGY	AFP		(GCA)	(µS/cm)	(GCA, (as	s mg/L	(as mg/L	(as mg/L	(mg/L)	(mg/L)	(mg/L)														
			(m)						µS/cm) Ca	aCO3)	CaCO3)	CaCO3)								mg/L							μg/L		
MOTTLED-	ZONE																												
ARD_001	Vesuvius	MDD010	6-9	UM	NAF	5.4	5.3	2,300	2,590		<1	<1	690	100	0.2	3.3	28	12	370	0.37	0.21	0.09	12	13	<1	<1	<1	<0.5	450
ARD_004		MRC127	0-3	GB	NAF	8.3	8.1	1,800	1,880		140	<1	420	120	1.7	9.0	7.5	7.0	320	0.32	0.02	0.00	7.4	7.7	<1	<1	2	7.6	1,500
ARD_005		MRC130	1-4		NAF	5.0	5.1	2,900	3,120	7	<1	<1	820	140	< 0.1	5.9	27	8.1	470	0.47	0.18	0.18	20	20	<1	<1	<1	< 0.5	640
ARD_006		MRC125	1-4	BAS	NAF	4.2	4.3	3,600	4,070	19	<1	<1	1,100	240	0.4	18.0	55	11	570	0.57	1.6	0.23	20	19	<1	<1	<1	< 0.5	1,100
ARD_002	Fuji	MRC137	0-3	UM	NAF	4.3	4.4	1,800	2,090	14	<1	<1	490	100	0.2	3.7	20	4.7	290	0.29	0.86	0.24	20	20	<1	<1	<1	< 0.5	670
SAPROLITE	-ZONE																												
ARD_013	Vesuvius	MDD006	58-60.8	UM	NAF	7.1	6.7	7,000	7,650		10	<1	2,100	400	0.3	1.8	54	25	1,300	1.3	< 0.01	0.01	11	11	<2	<2	<2	<1	580
ARD 019		MRC125	25-28	BAS	NAF	6.5	6.2	4,300	4,840		<1	<1	1,200	290	0.3	2.2	19	19	740	0.74	< 0.01	0.25	19	19	2	<1	<1	< 0.5	1,100
ARD_011	Fuji	MRC137	41-44	UM	NAF	7.0	6.7	1,400	1,540		10	<1	370	89	0.6	0.1	1.2	4.7	260	0.26	0.02	0.01	15	16	2	<1	4	17	340
						n				~ 1								-	_	-	_								
SAMPLE_	PIT	DRILLHOLE_	DOWNHOLE-			Ti	Ni	Cr	Cr(VI)	Co	Cu	Zn	Cd	Pb	Hg	Ag	Bi	Sn	Ba	Sr	Р	Tl	Th	U	V				
SAMPLE_ ID	PIT	DRILLHOLE_ ID	DOWNHOLE- INTERVAL	LITHOLOGY	AFP	Ti	Ni	Cr	Cr(VI)	Co	Cu	Zn	Cd	Pb	Hg	Ag	Bi	Sn	Ba	Sr	Р	Tl	Th	U	V				
SAMPLE_ ID	PIT	DRILLHOLE_ ID	DOWNHOLE- INTERVAL (m)	LITHOLOGY	AFP	Ti	Ni	Cr	Cr(VI)	Co	Cu	Zn	Cd	Pb	Hg μg/L	Ag	Bi	Sn	Ba	Sr	Р	Tl	Th	U	V				
SAMPLE_ ID MOTTLED-	PIT ZONE	DRILLHOLE_ ID	DOWNHOLE- INTERVAL (m)	LITHOLOGY	AFP	Ti	Ni	Cr	Cr(VI)	Co	Cu	Zn	Cd	Pb	Hg μg/L	Ag	Bi	Sn	Ba	Sr	Р	TI	Th	U	V				
SAMPLE_ ID MOTTLED- ARD 001	PIT ZONE Vesuvius	DRILLHOLE_ ID MDD010	DOWNHOLE- INTERVAL (m)	LITHOLOGY	AFP		<u>Ni</u> 58	Cr	Cr(VI)	Co 15	Cu 28	Zn 210	Cd <0.1	Pb	Hg μg/L <0.05	Ag <1	Bi <1	Sn <1	Ba 36	Sr 53	P <50	TI <1	Th <1	U <1	<u>v</u> <1				
SAMPLE_ ID MOTTLED- ARD_001 ARD 004	PIT ZONE Vesuvius	DRILLHOLE_ ID MDD010 MRC127	DOWNHOLE- INTERVAL (m) 6-9 0-3	LITHOLOGY UM GB	AFP NAF NAF	Ti	Ni 58 <1	Cr <1 <1	Cr(VI)	Co 15 <1	Cu 28 7	Zn 210 <5	Cd <0.1 <0.1	Pb	Hg μg/L <0.05 <0.05	Ag <1 <1	Bi	Sn	Ba 36 25	Sr 53 150	P <50 <50	TI	Th <1 <1	U <1 <1	V <1 15				
SAMPLE_ID MOTTLED- ARD_001 ARD_004 ARD 005	PIT ZONE_ Vesuvius	MDD010 MRC127 MRC130	DOWNHOLE- INTERVAL (m) 6-9 0-3 1-4	LITHOLOGY UM GB	AFP NAF NAF NAF	Ti	Ni 58 <1 16	Cr <1 <1 <1	Cr(VI)	Co 15 <1 37	Cu 28 7 24	Zn 210 <5 23	Cd <0.1 <0.1 <0.1	Pb <1 <1 <1 <1	Hg μg/L <0.05 <0.05 0.07	Ag <1 <1 <1 <1	Bi	Sn <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Ba 36 25 44	Sr 53 150 140	P <50 <50 <50	TI	Th <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	U <1 <1 <1	V <1 15 <1				
SAMPLE_ ID MOTTLED- ARD_001 ARD_004 ARD_005 ARD_006	PIT ZONE_ Vesuvius	DRILLHOLE_ ID MDD010 MRC127 MRC130 MRC125	DOWNHOLE- INTERVAL (m) 6-9 0-3 1-4 1-4	LITHOLOGY UM GB BAS	AFP NAF NAF NAF NAF	Ti	Ni 58 <1 16 80	Cr <1 <1 <1 2	<u>Cr(VI)</u>	Co 15 <1 37 76	Cu 28 7 24 100	Zn 210 <5 23 100	<0.1 <0.1 <0.1 <0.1 <0.1	Pb <1 <1 <1 <1 <1	Hg μg/L <0.05 <0.05 0.07 <0.05	Ag <1 <1 <1 <1 <1	Bi <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Sn <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Ba 36 25 44 41	Sr 53 150 140 490	P <50 <50 <50 <50	TI <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Th <1 <1 <1 <1 <1 <1	U <1 <1 <1 <1	V <1 15 <1 <1 <1				
SAMPLE_ID MOTTLED- ARD_001 ARD_004 ARD_005 ARD_006 ARD_002	PIT ZONE_ Vesuvius Fuji	DRILLHOLE_ ID MDD010 MRC127 MRC130 MRC125 MRC137	DOWNHOLE- INTERVAL (m) 6-9 0-3 1-4 1-4 1-4 0-3	UM GB BAS UM	AFP NAF NAF NAF NAF NAF	Ti	Ni 58 <1 16 80 84	Cr <1 <1 <1 2 20	Cr(VI)	Co 15 <1 37 76 49	Cu 28 7 24 100 100	Zn 210 <5 23 100 180	Cd <0.1 <0.1 <0.1 <0.1 <0.1	Pb <1	Hg μg/L <0.05 <0.05 0.07 <0.05 <0.05	Ag <1 <1 <1 <1 <1 <1 <1	Bi <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Sn <1 <1 <1 <1 <1 <1	Ba 36 25 44 41 88	Sr 53 150 140 490 110	P <50 <50 <50 <50 <50	TI	Th <1	U <1 <1 <1 <1 <1 <1	V </td <td></td> <td></td> <td></td> <td></td>				
SAMPLE_ID MOTTLED- ARD_001 ARD_004 ARD_005 ARD_006 ARD_002	PIT ZONE_ Vesuvius Fuji	DRILLHOLE_ ID MDD010 MRC127 MRC130 MRC137	DOWNHOLE- INTERVAL (m) 6-9 0-3 1-4 1-4 0-3	UM GB BAS UM	AFP NAF NAF NAF NAF	Ti <1 <1 <1 <1 <1	Ni 58 <1 16 80 84	Cr <1 <1 <1 2 20	Cr(VI)	Co 15 <1 37 76 49	Cu 28 7 24 100 100	Zn 210 <5 23 100 180	<0.1	Pb <1	Hg μg/L <0.05 <0.05 0.07 <0.05 <0.05	Ag <1 <1 <1 <1 <1 <1	Bi <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Sn <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Ba 36 25 44 41 88	Sr 53 150 140 490 110	P <50 <50 <50 <50 <50	TI <1 <1 <1 <1 <1	Th <1	U <1 <1 <1 <1 <1 <1	V ≤1 15 ≤1 ≤1 ≤1				
SAMPLE_ID ID ARD_001 ARD_004 ARD_005 ARD_006 ARD_002 SAPROLITE	PIT ZONE_ Vesuvius Fuji	DRILLHOLE_ ID MDD010 MRC127 MRC130 MRC125 MRC137	DOWNHOLE- INTERVAL (m) 6-9 0-3 1-4 1-4 0-3	UM GB BAS UM	AFP NAF NAF NAF NAF	Ti	Ni 58 <1 16 80 84	Cr <1 <1 <1 2 20	Cr(VI)	Co 15 <1 37 76 49	Cu 28 7 24 100 100	Zn 210 <5 23 100 180	<0.1	Pb <1	Hg μg/L <0.05 <0.05 0.07 <0.05 <0.05	Ag <1 <1 <1 <1 <1 <1	Bi <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Sn	Ba 36 25 44 41 88	53 150 140 490 110	P <50 <50 <50 <50 <50	T1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Th <1	U <1 <1 <1 <1 <1	V				
SAMPLE_ID ID ARD_001 ARD_004 ARD_005 ARD_006 ARD_002 SAPROLITE ARD_013	PIT ZONE_ Vesuvius Fuji -ZONE_ Vesuvius	DRILLHOLE_ ID MDD010 MRC127 MRC130 MRC137 MDD006	DOWNHOLE- INTERVAL (m) 6-9 0-3 1-4 1-4 0-3 58-60.8	LITHOLOGY UM GB BAS UM	AFP NAF NAF NAF NAF NAF	Ti	Ni 58 <1 16 80 84 20	Cr <1 <1 <1 2 20 4	Cr(VI)	Co 15 <1 37 76 49 <2	Cu 28 7 24 100 100 8	Zn 210 <5 23 100 180 16	Cd <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2	Pb <1	Hg μg/L <0.05 <0.05 0.07 <0.05 <0.05 <0.05	Ag <1 <1 <1 <1 <1 <2	Bi <1 <1 <1 <1 <1 <1 <1 <1 <1 <2	Sn <1 <1 <1 <1 <1 <1 <2	Ba 36 25 44 41 88 1.4	Sr 53 150 140 490 110 30	P <50 <50 <50 <50 <50 <50	TI <1 <1 <1 <1 <1 <1 <2	Th <1	U <1 <1 <1 <1 <1 <1 <2	V				
SAMPLE_ ID MOTTLED- ARD_001 ARD_004 ARD_005 ARD_006 ARD_002 SAPROLITH ARD_013 ARD_019	PIT ZONE_ Vesuvius Fuji -ZONE_ Vesuvius	DRILLHOLE_ ID MDD010 MRC127 MRC130 MRC137 MDD006 MRC125	DOWNHOLE- INTERVAL (m) 6-9 0-3 1-4 1-4 0-3 58-60.8 25-28	LITHOLOGY UM GB BAS UM UM BAS	AFP NAF NAF NAF NAF NAF NAF	Ti	Ni 58 <1 16 80 84 20 71	Cr <1 <1 <1 2 20 4 2	Cr(VI)	Co 15 <1 37 76 49 <2 94	Cu 28 7 24 100 100 8 8 18	Zn 210 <5 23 100 180 16 30	Cd <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1	Pb <1	Hg μg/L <0.05 <0.05 0.07 <0.05 <0.05 <0.05 <0.05	Ag <1 <1 <1 <1 <1 <1 <2 <1	Bi <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Sn <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <2 <1 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Ba 36 25 44 41 88 1.4 2.2	Sr 53 150 140 490 110 30 63	P <50 <50 <50 <50 <50 <50 <50 <50	TI <1 <1 <1 <1 <1 <2 <1	Th <1	U <1 <1 <1 <1 <1 <1 <1 <2 <1	V <				

Notes:

Water-Extraction Testwork corresponds to slurries prepared from the 'coarse-crushed' (nominal -5 mm) samples prepared using high-purity-deionised-water (HPDW), and a solid:water ratio of 1:2 (w/w).

Test-slurries bottle-rolled overnight and then left to 'still-stand' for ca. 1-2 days prior to decanting supernatants for vacuum-filtration (0.45µm-membrane) for analysis.

Samples ARD_011 and ARD_019 produced water-extracts that were very difficult to filter through 0.45µm-membrane, even with centrifugation prior to filtration.

A hyphen indicates assaying not undertaken.

 Geo-Codes:
 UM
 Ultramafic

 GB
 Gabbro

 BAS
 Basalt

Table 4: Leachate-Assa	vs for Saturated-Leaching Columns:	Mottled-Zone Samples from Vesuvius an	d Fuji Pits

SAMPLE_	PIT	DRILLHOLE_	DOWNHOLE-			pН	pН	EC	EC	Acidity	HCO3	Cl	SO4	F	Ca	Mg	K	Na	Al	Fe	Mn	Si r	eactSi	As	Sb	Se	Mo	В
ID		ID	INTERVAL	LITHOLOGY	AFP		(GCA)	(µS/cm)	(GCA,	(as mg/L	(as mg/L	(mg/L)	(mg/L)	(mg/L)														
			(m)						μS/cm)	CaCO3)	CaCO3)								mg/L							μg/L		
ARD_001_1	Vesuvius	MDD010	6-9	UM	NAF	5.8	6.2	16,000	16,240		2	4,800	710	< 0.1	25	260	47	2,700	0.10	< 0.03	0.30	13	13	<5	<5	<5	<3	1,500
ARD_001_2						5.7	6.0	1,200	1,460			200	240	< 0.1					0.02	< 0.01	< 0.01	11	11					860
ARD_001_3						5.6	5.6	510	922			66	130	< 0.1					0.02	< 0.01	< 0.01	9.0	9.4					560
ARD_001_4						5.4	5.5	350	435	3		56	59	< 0.1	0.11	0.53	2.7	60	0.02	< 0.01	< 0.01	8.3	8.1	<1	<1	<1	< 0.5	440
ARD_004_1	Vesuvius	MRC127	0-3	GB	NAF	8.1	8.1	9,500	9,700		120	2,600	740	1.2	9.7	120	27	1,600	0.04	< 0.03	0.02	7.3	7.6	<5	<5	7	7.7	3,400
ARD_004_2						8.8	8.8	1,500	1,640			190	130	4.9					0.02	< 0.01	< 0.01	9.4	9.6					<5
ARD_004_3						8.6	8.8	630	646			30	14	5.1					0.02	< 0.01	< 0.01	8.3	8.6					<5
ARD_005_1	Vesuvius	MRC130	1-4	GB	NAF	4.0	3.9	16,000	16,240	88		5,100	720	0.5	43	270	27	2,700	7.6	0.08	0.91	16	17	5	<5	<5	<3	2,300
ARD_005_2						5.4	5.0	1,200	1,490	5		190	230	< 0.1					0.04	< 0.01	0.02	14	14					<5
ARD_005_3						6.1	5.7	390	422			19	150	< 0.1					0.01	< 0.01	< 0.01	16	17					<5
ARD_005_4						5.6	5.7	270	295			10	88	< 0.1	0.08	0.15	0.71	49	0.01	< 0.01	< 0.01	17	18	1	<1	<1	< 0.5	<5
ARD_006_1	Vesuvius	MRC125	1-4	BAS	NAF	3.7	3.6	21,000	22,700	91		6,500	1,300	1.0	130	370	41	3,500	8.8	0.14	0.94	20	20	<5	<5	<5	<3	4,600
ARD_006_2						4.1	3.9	1,400	1,750	12		260	220	< 0.1					0.08	0.03	0.03	16	16					<5
ARD_006_3						4.2	4.1	450	455	7		40	140	< 0.1					0.02	0.02	0.01	16	16					<5
ARD_006_4						4.2	4.1	310	337	6		23	84	< 0.1	0.77	2.0	2.4	48	0.03	0.01	0.02	15	16	<1	<1	<1	< 0.5	<5
ARD_002_1	Fuji	MRC137	0-3	UM	NAF	3.9	3.7	9,800	10,040	150		2,900	580	1.2	23	140	14	1,700	18	0.31	1.1	19	20	6	<5	<5	<3	2,200
ARD_002_2						4.7	4.6	850	955	8		110	210	< 0.1					0.10	0.06	0.03	17	17					810
ARD_002_3						4.8	4.5	380	415	5		41	86	< 0.1					0.04	0.04	0.01	16	17					500
ARD_002_4						4.9	4.8	220	241	4		23	52	< 0.1	0.14	0.51	0.55	40	0.02	0.02	0.01	13	13	<1	<1	<1	< 0.5	350

	DIT		DOUDUOL D				N .	C	C (III)	C	C	7	C1	DI			D !	G	n	C	D	
SAMPLE_	PII	DRILLHOLE_	DOWNHOLE-			11	Ni	Cr	Cr(VI)	Co	Cu	Zn	Cđ	Pb	Hg	Ag	BI	Sn	Ва	Sr	P	L
ID		ID	INTERVAL	LITHOLOGY	AFP																	
			(m)												μg/L							
ARD_001_1	Vesuvius	MDD010	6-9	UM	NAF	<5	79	<5	<1	52	38	15,000	< 0.5	<5	0.11	<5	<5	<5	60	560	<50	
ARD_001_2							13	<1		2	6	430										
ARD_001_3							3	<1		<1	3	140										
ARD_001_4						<1	2	<1		<1	2	120	< 0.1	<1	< 0.05	<1	<1	<1	2.9	1	<50	
ARD 004 1	Vesuvius	MRC127	0-3	GB	NAF	<5	100	<5	<1	<5	6	<25	< 0.5	<5	< 0.05	<5	<5	<5	29	1,900	<50	
ARD 004 2							8	<1		<1	3	<5										
ARD 004 3							2	<1		<1	2	<5										
ARD 005 1	Vesuvius	MRC130	1-4	GB	NAF	<5	140	7	<1	140	150	4 800	<0.5	18	0.31	<5	<5	<5	57	1 300	<50	
ARD 005 2	v esu vius	Millerso	1 1	65	11111		6	, 1	<1	2	8	69	-0.5	10	0.51	.0	.0	.0	57	1,500	.00	
ARD_005_2							3	<1	~1	<1	3	12										
ARD_005_5						<1	2	<1		<1	2	12	<0.1	<1	<0.05	~1	~1	~1	1.0	~1	<50	
ARD_005_4						~1	2	~1		~1	5	0	<0.1	~1	<0.05	~1	~1	~1	1.9	~1	<50	
ARD 006 1	Vesuvius	MRC125	1-4	BAS	NAF	<5	320	11	<1	280	310	7.200	<0.5	19	0.22	<5	<5	<5	55	3.100	<250	
ARD 006 2						-	11	2	<1	7	25	130								-,		
ARD 006 3							4	<1	-	2	11	35										
ARD 006 4						<1	6	<1		_ _	11	47	< 0.1	<1	<0.05	<1	<1	<1	26	16	<50	
/IIIID_000_4						1	0	-1		-	11	-17	-0.1	-1	-0.05	-1	-1	-1	20	10	-50	
ARD 002 1	Fuji	MRC137	0-3	UM	NAF	<5	430	130	<1	240	660	6,200	< 0.5	16	0.21	<5	<5	<5	59	630	<50	
ARD 002 2							14	29	<1	5	36	93										
ARD 002 3							7	14	<1	2	18	34										
ARD 002 4						<1	4	7	<1	- 1	11	24	< 0.1	<1	<0.05	<1	<1	<1	15	3	<50	
11102_002_4						1	-	,	-1	1	11	27	-0.1	-1	-0.05	-1	-1	-1	15	5	-50	

<u>Notes:</u> EC = Electrical-Conductivity

Saturated-Leaching Columns contained 1.00 kg (dry-solids equivalent) of 'coarse-crushings' (-5 mm nominal), and were leached with 0.50 kg lots of high-purity-deionised-water (HPDW). It generally took 1-2 weeks for each lot of HPDW to drain through the columns; sample ARD_004 was much slower draining with up to *ca*. 1 month needed for each lot of HPDW to drain fully through.

All samples produced ca. 0.20 kg of leachate for Cycle-1, and then ca. 0.50 kg thereafter.

Tl	Th	U	V
<5	<5	<5	<5
<1	<1	<1	<1
<5	<5	<5	5
<5	<5	<5	<5
<1	<1	<1	<1
<5	<5	<5	<5
<1	<1	<1	<1
<5	<5	<5	<5
-	-	-	
<1	<1	<1	<1

UM Ultramafic GB Gabbro BAS Basalt

Geo-Codes:

SAMPLE_ ID	PIT	DRILLHOLE ID	DOWNHOLE- INTERVAL (m)	LITHOLOGY	рН-(1:2)	EC-(1:2) [mS/cm]	TOTAL-S (%)	Cr(II)- REDS (%)	TOTAL-C (%)	CO3-C (%)	BULK- ANC (kg H2SO4/t)	AFP CATEGORY
					GCA	GCA	GLS	SGS	GLS	GLS	GCA	
FRESH-ZO	NE											
ARD_021	Vesuvius	MRC125	43-46	BAS	8.4	0.71	0.01	< 0.005	0.02	< 0.01	2	NAF
ARD_022			47-50		8.9	0.28	< 0.01	< 0.005	0.01	< 0.01	2 (2)	NAF
ARD_023			52-55		9.1	0.16	< 0.01	< 0.005	0.04	0.02	2	NAF
ARD_024			57-60		8.9	0.20	< 0.01	< 0.005	0.02	< 0.01	2	NAF
ARD_025	Pinatubo	PTC006	21-24		8.7	0.57	< 0.01	< 0.005	0.02	< 0.01	2	NAF

Table 6: Acid-Base-Analysis Results for Fresh-Zone-Basalt Samples: Model of TSF-Construction Material

Notes:

EC = Electrical-Conductivity; ANC = Acid-Neutralisation Capacity; AFP = Acid-Formation Potential; NAF = Non-Acid Forming.

pH-(1:2) and EC-(1:2) values correspond to pH and EC measured on sample slurries prepared with deionised-water, and a solid:solution ratio of *ca*. 1:2 (w/w).

All results expressed on a dry-weight basis, except for pH-(1:2), and EC-(1:2).

BAS

Values in parentheses represent duplicates.

Geo-Code:

Basalt

SAMPLE_		DRILLHOLE_	DOWNHOLE-			S	Ca	Mg	K	Na	Fe	Al	Si	Ti	As	Sb	Se	Мо	В	F	Ni	Cr	
ID –	PIT	ID –	INTERVAL	LITHOLOGY	AFP										-								
			(m)							%							mø/k	σ			mø/kø		
			()							/0								- D			<u>-</u> ,	2	
FRESH-ZON	<u>NE</u>																						
ARD_022	Vesuvius	MRC125	47-50	BAS	NAF	< 0.01	7.5	4.4	0.17	1.6	7.9	7.0	2.6	0.43	1	0.1	0.02	1.3	<20	422	170	200	
ARD 025	Pinatubo	PTC006	21-24		NAF	< 0.01	8.2	4.3	0.47	1.3	12	7.9	2.3	2.2	<1	< 0.1	< 0.01	0.8	<20	310	130	80	
_																							
							Ave	erage_C	rustal /	Ahunda	nce (Ro	wen 197	9)		15	0.2	0.05	15	10	950	80	100	
							AV	age-ei	ustal r	ibunua			/)		1.5	0.2	0.05	1.5	10)50	00	100	
SAMPLE		DRILLHOLE	DOWNHOLE-			Cu	Zn	Cd	Pb	Hg	Со	Mn	Ag	Bi	Р	Sr	Ba	Sn	V	Tl	Th	U	
ID -	PIT	ID -	INTERVAL	LITHOLOGY	AFP																		
			(m)		mg/kg																		
			()											8									
FRESH-ZON	NE																						
ARD 022	Vesuvius	MRC125	47-50	BAS	NAF	93	77	0.1	3	< 0.01	54	1,200	0.2	0.5	220	110	13	0.7	250	< 0.2	0.29	0.07	
ARD 025	Pinatubo	PTC006	21-24		NAF	58	84	0.2	3	< 0.01	83	1,200	< 0.1	0.6	130	370	56	0.7	700	< 0.2	0.52	0.13	
—												,											
			Average (Crustal Abunda	nce	50	75	0.11	14	0.05	20	950	0.07	0.05	1 000	370	500	2.2	160	0.6	12	24	
			(D	10 7 0)		50	15	0.11	14	0.05	20	750	0.07	0.05	1,000	570	500	2.2	100	0.0	12	2. T	
			(B)	owen 1979)																			
							:	signifies	elemer	nt conter	nt 10-10	0 times a	verage-	crustal	abundan	ce							
Geo-Code:		BAS	Basalt				:	signifies	elemer	it contei	nt 100+ 1	times av	erage-cr	ustal ał	oundance								

Table 7: Multi-Element-Analysis Results for Fresh-Zone-Basalt Samples: Model of TSF-Construction Material

Geo-Code:

<u>Reference:</u> Bowen HJM, 1979, "Environmental Chemistry of the Elements", Academic Press, New York

Table 8: Water-Extraction-Testwork Results for Fresh-Zone-Basalt Samples: Model of TSF-Construction Material

SAMPLE_		DRILLHOLE_	DOWNHOLE-			pН	pН	EC	EC	Acidity	HCO3	CO3	Cl	SO4	F	Ca	Mg	K	Na	Fe	Al	Μ
ID	PIT	ID	INTERVAL	LITHOLOGY	AFP		(GCA)	(µS/cm)	(GCA,	(as mg/L	(as mg/L	(as mg/L	(mg/L)	(mg/L)	(mg/L)							
			(m)						μS/cm)	CaCO3)	CaCO3)	CaCO3)								mg/l	L	
FRESH-ZON	<u>E</u>																					
ARD_022	Vesuvius	MRC125	47-50	BAS	NAF	7.7	7.3	260	432		37	<1	48	16	0.7	0.7	0.10	0.99	48	0.05	0.41	<0
ARD_025	Pinatubo	PTC006	21-24		NAF	7.6	7.4	280	330		31	<1	56	20	0.8	0.23	0.59	0.34	51	0.69	0.69	<0
SAMPLE		DRILLHOLE	DOWNHOLE-			Ti	Ni	Cr	Cr(VI)	Со	Cu	Zn	Cd	Pb	Hg	Ag	Bi	Sn	Ba	Sr	Р	Т
ID	PIT	ID –	INTERVAL (m)	LITHOLOGY	AFP									ļ	ıg/L							
FRESH-ZON	<u>E</u>																					
ARD 022	Vesuvius	MRC125	47-50	BAS	NAF	2	2	1	-	<1	12	<5	< 0.1	<1	0.07	<1	<1	<1	2.0	5	130	
ARD_025	Pinatubo	PTC006	21-24		NAF	11	5	1	<1	<1	8	<5	< 0.1	<1	< 0.05	<1	<1	<1	0.5	1	150	

Notes: Water-Extraction Testwork corresponds to slurries prepared from the **crushed (nominal -2 mm)** samples prepared using high-purity-deionised-water (HPDW), and a solid:water ratio of **1:2 (w/w)**.

Test-slurries bottle-rolled overnight and then left to 'still-stand' for ca. 1-2 days prior to decanting supernatants for vacuum-filtration (0.45µm-membrane) for analysis.

Samples ARD_022, and ARD_025, produced water-extracts that were very difficult to filter through 0.45 µm-membrane, even with centrifugation priort o filtration.

A hyphen indicates assaying not undertaken.

BAS Basalt

Geo-Code:

PLATES

Graeme Campbell & Associates Pty Ltd

As-Received Drilling Samples Following Preparation

Crushings and Pulps for Testing

PLATE 1: 'As-Received' Drilling Samples at GCA Testing Laboratory (Bridgetown) following preparation by GLS Intertek (Maddington). Preparation of drillcore comprised 'coarse-crushing' to -5 mm nominal, and pulverising ('pulping') to -75 μm nominal. The so-generated crushings and pulps were employed in specific tests.

PLATE 2: Determination of pH-(1:2) and EC-(1:2) values (EC = Electrical-Conductivity) using crushings (-5 mm nominal). Test-slurries aged in contact with air at room-temperature (20-22 °C) for *ca*. 2-3 days prior to measuring pH and EC. The test-slurries were stirred using a spatula a number of times during this ageing period. Supernatant-water initially decanted for EC determination, and following return to beaker, slurrypH measured. For a number of samples, the 'turbid/muddy' supernatants needed to be centrifuged at 3,000 G for 30 minutes in order to obtain clear supernatants suitable for EC measurement (see further below).

PLATE 3: The above shows how the <u>Saprolite-Zone</u> samples resembled "clayglugs" when contacted with deionised-water reflective of their unstable "swelling" tendency.

See also PLATE 7 and PLATE 8.

Graeme Campbell & Associates Pty Ltd

Soil-Salinity Sensors in "Potted" Fine-Earth (-2 mm) Fraction

Close-up of Soil-Salinity Sensor

PLATE 4: Use of soil-salinity sensors in testing of Mottled-Zone samples.

Demonstration of the naturally elevated salinity of the <u>uppermost</u>, Fe-rich <u>metres of the geologic-profile</u>.

PLATE 5: Acid-Neutralisation-Capacity (ANC) testing using 'fine-crushings' (-2 mm, dry-sieved).

PLATE 6: Water-Extraction Testwork using 'coarse-crushings' (-5 mm nominal), and a solid:deionised-water ratio of **1:2** (w/w). Test-slurries agitated continuously via bottle-rolling, and then left to 'still-stand' for 1-2 days to allow 'fine-particulates' to settle, prior to decanting via siphoning. The decanted supernatants were then vacuum-filtered (0.45μ m-membrane), and resulting filtrates preserved, as appropriate, for specific analytes. Centrifugation at *ca.* 3,000 G for 30 mins was required for some samples to facilitate vacuum-filtration (see **PLATE 7**).

PLATE 7: The above shows the <u>highly-dispersed state</u> (= "clay-soup") of the decanted "mother-liquor" initially decanted following completion of the Water-Extraction Testwork for sample ARD_019 (Saprolite-[Basalt] from Vesuvius Pit). This was one of the samples for which centrifugation was required in order to undertake vacuum-filtration.

PLATE 8: Demonstration of the **swelling tendency** under unsaturated-flow conditions as 'wetting-front' (= 'wicking-front') advances under matric-suction gradient into dry <u>Saprolite-Zone</u> samples.

PLATE 9: Saturated-Leaching Columns run for <u>Mottled-Z</u>one samples.

ATTACHMENT A

OVERVIEW OF GEOLOGY FOR MEDCALF PROJECT

Graeme Campbell & Associates Pty Ltd

Memo

To:	Geoffrey Han
From:	Brent Butler
CC:	Graeme Campbell & Phil Scott
Date:	17 March 2020
Re:	Brief description of Medcalf geology

1 GEOLOGY

1.1 Introduction and background

The Medcalf Project lies in the Archaean aged Lake Johnston greenstone belt in the Yilgarn Craton. This belt contains komatiite lava flows, subvolcanic intrusions, mafic volcanic rocks, felsic volcanic rocks, banded iron formation (BIF) and sedimentary rocks. The deposit is hosted by the Medcalf layered sill, which is a flat lying igneous body which has intruded parallel to the enclosing basalts. The sill is comprised of an upper gabbroic zone, a middle pyroxenite zone, with a lower amphibolite zone.

The deposit was discovered by Union Laporte Miniere in the 1960s. Historic exploration in the 1970s and 1980s by Amoco defined three separate areas of vanadium mineralisation known as the Vesuvius, Fuji and Egmont Prospects.

The Medcalf deposit is located in the Archaean aged Lake Johnston greenstone belt in the southern portion of the Youanmi Terrane, part of the Yilgarn Craton (Figure 1). This belt is a narrow north-northwest trending belt, approximately 110 km in length. It is located near the south margin of the Yilgarn Craton, midway between the southern ends of Norseman-Wiluna and the Forrestonia-Southern Cross greenstone belts.

The eastern and northern limits of the Lake Johnston Greenstone Belt are defined by the large northwest-trending Koolyanobbing shear zone. To the west, the greenstones are bound by grantoids and gneissic rocks which extend some 70 km west to the Forrestonia-

Southern Cross greenstone belts. To the south, the greenstones appear to pinch out in granites.

Figure 1: Regional geology showing greenstone belts and mine locations

The western margin of the Lake Johnston greenstone belt consists of a west facing succession of mafic and felsic volcanics, some sediment horizons, Banded Iron Formation (BIF) and three ultramafic units.

The volcanics and sediments are flanked and intruded by granitic rocks which disrupt the continuity of the greenstone belt. Pegmatitic doleritic dykes are common. The sequence is extensively faulted, and gently inclined. North and south plunging folds have been

recognised. The boundaries of the greenstone belt are thought to be largely defined by strike parallel shears and faults.

The bedrock geology is widely masked by lateritic duricrust, deep oxidation and transported material. The average thickness of the regolith and weathered bedrock is 60 to 80 m. Weathering of ultramafic rock types is often intense with widespread development of silica-rich "cap-rock" in the saprolite zone.

1.1.1 Regional structure

The Regional structure strike approximates 330[°] with the foliation dipping most commonly steeply to the east, with the only major exception being dips within the metabasalt along the western edge of Lake Johnston to the west.

The Lake Johnston greenstone belt is considered to be a western overturned limb of a broad regional anticline. The eastern limb is no longer preserved having been removed by one or a combination of the following factors:

- Faulted out to a higher position followed by erosion to present levels
- Obliterated by late stage granite intrusion
- The unit corresponds to a thinner and less developed section of the pile

The third point above is also considered to be the reason for the general lensing out of the main layered intrusive toward the southern end.

The Medcalf layered sill has been intruded low in the greenstone succession and appears to be in the hinge zone of a major, gently north plunging regional anticline. The succession to the west of Medcalf is west-facing but is generally overturned, with steep easterly dips. To the east of Medcalf are the granite intruded remnants of the east-facing eastern limb of the regional anticline.

1.1.2 Regional mineralisation

Mineralisation in the Lake Johnston area includes nickel, base metals, vanadium, iron, titanium and gold.

3

Nickel is the dominant commodity in the area where there are several mines in the area. Western Areas Limited operate two underground mines at Forrestonia, Flying Fox and the Spotted Quoll mines which produce on average 25,000 t/a of nickel concentration per year. Poseidon Nickel Ltd (Poseidon) own the two underground nickel mines Emily Ann and Maggie Hays (both on care and maintenance) in the Lake Johnston area.

Audalia's Medcalf Project located some 50 km south of the Maggie Hays Nickel Mine. The mineralisation is contained within a pyroxenite sill and was drilled during 2013 by Audalia for Resource definition. The latest JORC (2012) Resource of 32Mt @ 0.47% V₂O₅, 8.98% TiO₂ and 49.2% Fe₂O₃ was announced to the market on August 31st, 2018.

The Medcalf Project lies within the Medcalf layered sill, which is a flat lying igneous body which has intruded parallel to the enclosing volcanic strata basalt, prior to regional metamorphism. It is a layered basic sill of the gravity differentiated type. The sill is comprised of an upper gabbroic zone, a middle pyroxenite zone, with a lower amphibolite zone in the footwall. Four separate zones of vanadium, titanium and iron mineralisation have been identified within the project area and named the Egmont, Vesuvius, Fuji and Pinatubo prospects. In the Medcalf deposit vanadium, iron and titanium have been concentrated in a pyroxenite unit, which has subsequently been enriched in these metals through weathering and regolith formation.

In the mineralised area (Figure 2) the magnetite-rich sequence is deeply weathered, with +60m of saprolite showing vertical zonation of weathering minerals due to progressive weathering. Mineralogy of the vanadium rich zone is dominated by hematite-goethite and kaolinite with minor ilmenite, diaspore, gibbsite, anatase, rutile, magnetite, quartz and mica.

4

Figure 2 - Medcalf deposit geology

The fully developed lateritic weathering profile is divisible into four zones. Starting from the top, they are lateritic residuum, mottled zone, saprolite and saprock. All vanadium, iron and titanium mineralisation lie in the saprolitic zone. Saprolite extends to the bottom of all the holes drilled by Audalia.

The following figures (Figures 3 & 4) provide north-south oriented cross section views through the deposit, and an east-west oriented long section view (Figure 5) through the deposit.

Figure 3 - Cross section A - B through the Vesuvius deposit

Figure 4 - Cross section C - D through the Fuji deposit

Figure 5 Long section E - F through the Vesuvius and Fuji deposits

1.2 Stratigraphy, structure, mineralisation and weathering controls

1.2.1 Stratigraphy

The stratigraphy in the Medcalf area is summarised in Table 1 below.

Medcalf Stratigraphy								
Geological period	Lithologies							
Cainozoic	Soil, scree cover, minor alluvium, lateritic weathering profile							
Proterozoic	Widgiemooltha mafic dykes							
Archean	Quartz veins							
	Pegmatites							
	Granitic rocks							
	Tholeiitic basalt and associated mafic sills							
	Medcalf layered sill							
	Siltsone (?)							
	Biotite feldspar +/- quartz schist							

Table 1 - Medcalf Stratigraphy

Individual lithologies are described in more detail below.

1.2.1.1 Archean

i. Siltstone

A finely-laminated haematitic saprolitc siltstone was intersected between 20.5 m and 24.0 m in vertical diamond drillhole MDD002 during Audalia's 2013 metallurgical core drilling programme located at GDA94 zone 51 - 292,780E, 6,398,286N.

This was possibly a carbonaceous siltstone originally (Figure 6). Pyroxenite occurs both above and below, suggesting that it is a sedimentary raft incorporated into the sill during intrusion.

Figure 6. Diamond drillhole MDD002 at 23.9 m

ii. Biotite Feldspar +/- Quartz Schist

Audalia's 2013 drill programme identified biotite feldspar +/- quartz schists up to several tens of metres thick in the Vesuvius deposits, at the base of the Medcalf Sill. In some drill holes it is absent, with basalt abutting the base of the sill.

Quartz feldspar biotite schist and gneiss were also recorded by Amoco in diamond drill hole LJ1, 3 km ESE of Vesuvius where it occupies a similar stratigraphic position beneath the Medcalf Sill.

This rock is interpreted as a metamorphosed siltstone, shale or airfall tuff. This interpretation is based on mineralogy, lateral extent and position in a thick subaqueous mafic volcanic sequence. Prior to metamorphism, this bed formed a zone of weakness along which the Medcalf Sill intruded.

Note that biotite-rich schists also occur in the middle of the pyroxenite unit. In upper greenschist facies, biotite can form in both sediments and mafic lithologies. A historic report by Amoco interprets these biotite-rich schists as shears.

iii. Basalt and Associated Dolerite Sills

Tholeiitic basalts form thick sequences above and below the Medcalf sill. They range from massive to schistose and generally subcrop as scattered fresh cobbles and boulders in red soil. Slightly coarser variants, up to about 1 mm grain size, are classified as dolerite, but they are not necessarily subvolcanic sills. The coarse grain size may result from metamorphism. Alternatively, coarse grain size could have developed in the slowly cooling interior of thick lava flows.

iv. Medcalf Layered Sill

Harris (1982) divides the Medcalf mafic sill into three units. From top down, they are:

- Gabbro at least 50 m thick
- Pyroxenite 36 m
- Peridotite 44 m

The sill is traceable along strike for at least 4 km and is roughly 130 m thick. The zones thicken and thin along strike; in some places they are absent altogether. Whether this is a primary feature related to intrusion, or to a later structural event is uncertain.

Distinguishing between mafic and ultramafic lithologies in weathered drill chips relied heavily on textures, sizes and percentage of relic black opaques. These opaques have survived metamorphism relatively unaltered, except where the rocks are strongly schistose.

v. Gabbro Zone

The gabbro has a grain size of 2 to 5 mm and ranges from massive to moderately foliated. It commonly subcrops as unweathered cobbles and boulders in red soil. Historic diamond drill holes LJ1 and LJ2 indicate gabbro is at least 50 m thick.

vi. Pyroxenite Zone

The pyroxenite has been metamorphosed to a tremolite-rich rock with variable amounts of black opaques. The highest TiO₂ analysis was 43.3 %, between 1 and 2 m in Audalia's RC drillhole MRC044. If all the titanium is contained in ilmenite, this mineral occupies 82 weight percent of the rock. Pyroxenite with higher volumes of black opaques is massive, as shown in drillhole MDD002 at 35.6m (Figure 7) whereas those with lower content tend to be more foliated (Figure 8).

In general, estimating percentage of black opaques in RC chip samples is difficult. The +2 mm opaques are retained, whereas the associated saprolitic clays (mainly weathered tremolite) pass through the 2 mm sieve aperture. In fresh rock, the opaques consist of magnetite and ilmenite. In the lower parts of the lateritic profile, they are partially weathered to haematite. Higher up, limonite takes the place of haematite. Under a 10x power hand lens 2 mm opaques are roughly equidimensional and frequently exhibit complex crystal faces.

On the western side of Vesuvius Hill, in the vicinity of Audalia's RC drillhole MRC017, banding in outcropping saprolitic pyroxenite is delineated by variations in the volume of

10

black opaques. This is interpreted as primary layering, developed during cooling in a subhorizontal sill.

Figure 7. Diamond drillhole MDD002 at 35.6 m

The pyroxenite is 40 m thick in diamond drill hole LJ1, 1.5km southeast of Pinatubo. However, the 53 m pyroxenite interval in LJ2 passing through the eastern part of Fuji includes gabbroic and peridotitic bands. Departures from the simple zoning inferred for the Medcalf Sill are also seen in diamond drill hole MDD001. Two elevated zones of chromium (~0.5 to 1 % Cr) occur at about 25 m and 45 m in pyroxenite in MDD002, suggesting intervals of ultramafic within the pyroxenite.

Figure 8. Diamond drillhole MDD001 at 24.0 m

vii. Ultramafic Zone

The ultramafic zone is variously represented by serpentinite, talcose tremolite chlorite schist and pale orange jasper. Talc is stable through the weathering profile and can still be identified in iron-rich or clay-rich material otherwise lacking diagnostic features. The ultramafic zone intersected in Audalia's RC drilling programme consisted of brown to pale grey green clay with subordinate orange chert. Relic textures in the grey green clay were restricted to disseminated 1 to 5 %, bimodal 0.2 mm and 2 mm black opaques. The 2 mm opaques are probably original. The 0.2 mm may be metamorphic, derived from exsolution during transformation of olivine to serpentine. Similar textures occur in the orange chert, showing that it is a silicified equivalent. Ultramafic intersected in the lower parts of diamond drill holes MDD001 and MDD002 consist of brown puggy clay, as shown in Figure 9.

Figure 9 Diamond drillhole MDD002 at 60.2 m

Talc carbonate schists located during mapping are interpreted as shear zones within the ultramafic.

viii. Granite and Pegmatite

Foliated granite occupies the south-central part of the tenement. Non-foliated pegmatite occurs along the margin of the granite and as dykes up to a few metres wide intruding the greenstones.

ix. Quartz Veins

Quartz veins range up to 2 m thick, commonly in lenticular pods up to a few tens of metres long. Some veins can be traced discontinuously for more than 200 m.

1.2.1.2 Proterozoic

No outcropping Widgiemooltha mafic dykes were identified.
1.2.1.3 Cainozoic

Soil and scree cover over 50% of the Medcalf tenements. Cainozoic lateritic weathering within the pyroxenite zone has been critical in upgrading the vanadium, iron & titanium mineralisation to ore grade.

1.2.2 Structure

Structure is currently poorly understood. Polyphase deformation, upper greenschist facies metamorphism, deep weathering and sparse outcrop are all contributing factors.

1.2.2.1 Folding

Previous workers have interpreted a broad west-plunging anticline in the tenement block.

Near the base of the pyroxenite on the southern margin of Vesuvius schistosity dips about 30[°] north. This roughly parallels the pyroxenite-ultramafic contact outlined by drilling to the north and suggests tight to isoclinal folding.

Most measurements on schistosity within the Medcalf tenements dip steeply to moderately to the north on both limbs. This could be interpreted as folds overturned to the south.

1.2.2.2 Faulting

Deposit-scale faulting is interpreted in the mineralised areas based on displacement of the pyroxenite ultramafic contact.

The ultramafic zone in the Medcalf sill forms a weak zone along which faulting could preferentially develop. Early thrusting could explain the apparently out of sequence zones in the Medcalf sill, especially east of Fuji.

1.2.2.3 Schistosity

Schistosity in the greenstones strikes roughly northwest with dips ranging from vertical to moderately northeast. Foliation in the granite has a similar strike, but dips moderately to steeply to the southwest.

14

1.2.2.4 Banding in Medcalf Sill

Alternating centimetre to decimetre-scale iron-rich and iron-poor layers in the pyroxenite zone crop out on the southwest side of Vesuvius, near drill hole Audalia's RC drillhole MRC017. These layers dip 12[°] to 15[°] to the north and define the dip of the Medcalf Sill in this area.

1.2.3 Ore types

Two types of vanadium, iron and titanium mineralisation were recognised as "in-situ" and "conglomerate".

The conglomerate mineralisation forms a veneer on the flanks of Vesuvius and Egmont. A vertical face of conglomerate ore on the southeast side of Egmont is 3 m high. In-situ mineralisation varies with its position in the weathering profile, as it passes downwards from lateritic residuum through the mottled zone into saprolite.

1.2.4 Mineralisation genesis and controls

1.2.4.1 Geometry

Geometry of the Medcalf vanadium, iron & titanium mineralisation is controlled by several factors. These include:

- 1. Stratigraphic control, with mineralisation confined to approximately a 50m thick pyroxenite zone within the Medcalf Sill.
- 2. Depth of lateritic weathering, where weathering has increased grades to economic levels.
- 3. Structural deformation. Both folding and faulting occur, but which dominates at ore body scale is uncertain.
- 4. Primary geometry of the mineralisation, prior to deformation and metamorphism

1.2.4.2 Stratigraphic Controls

The known deposits are confined to the approximately 50 m thick pyroxenite zone within the Medcalf Sill. This sill can be traced discontinuously in outcrop and by aeromagnetics for five kilometres across the tenement block.

1.2.4.3 Structural Controls

Surface mapping and drill information suggests a structurally complex picture in the Vesuvius area. Ironstone bands outcropping over Vesuvius and Fuji are interpreted as iron-titanium-rich bands within the pyroxenite.

1.2.4.4 Metamorphism

Biotite-bearing schists and the apparent absence of garnet indicate upper greenschist facies metamorphism. There is also some evidence that the Medcalf sequence has undergone a degree of late-stage contact metamorphism-metasomatism due to the granite intrusion.

1.2.4.5 Regolith Controls

The fully developed lateritic weathering profile is divisible into four zones. Starting from the top, they are lateritic residuum, mottled zone, saprolite and saprock.

Small areas of lateritic residuum are represented by massive dark red haematite-rich outcrops located at (Figure 10) and "conglomerate ore" (Figure 11) over the Vesuvius, Fuji and Egmont deposits. Massive (Figure 13) and pisolitic (Figure 14) mineralisation illustrate variants of lateritic residuum in diamond drill core.

Figure 10. Massive vanadium, iron and titanium mineralisation outcrop (292,860E, 6,39,8140N)

Figure 11. Conglomeratic vanadium, iron and titanium mineralisation (292,932E 6,398,311N)

The yellow brown interval from 2 to 11 m vertical depth in Audalia's RC drillhole MRC008 (Figure 15) is the mottled zone, based on correlation with mottled zone in adjacent diamond drill hole MDD002 (Figure 14).

Most of the vanadium, iron & titanium mineralisation lies in the saprolitic zone Figure 5 and Figure 6 are typical. Saprolite extends to the bottom of all the holes drilled by Audalia. The purple-red haematitic interval from 11 m to 43 m in MRC008 (Figure 7) includes high grade vanadium and titanium mineralisation in the saprolitic zone. The low-grade interval between 23 m and 28 m in MRC008 is interpreted to be siltstone, based on siltstone identified in adjacent drill hole MDD002. This siltstone was not recognised during logging of the chips. There are no obvious differences in Ti and V grades moving upwards from the saprolite to mottled zone.

1.2.4.6 Other

Figure 12 shows lateritic residuum for diamond drillhole MDD002 at 2.0m (central channel). Interval 1.4 to 2.3m assayed 1.0 % V_2O_5 , 21.4 % TiO₂ and 43.7 % Fe₂O₃.

Figure 13 shows lateritic residuum with pisolites for diamond drillhole MDD002 at 2.6 m. Interval 2.3 to 3.2 m assayed 1.12 % V_2O_5 , 25.8 % TiO₂ and 38.8 % Fe₂O₃. Cutans, consisting of a thin rind of limonite on the pisolites, indicates that they developed in-situ.

Figure 14 shows mottled zone for diamond drillhole MDD002 at 6.1 m. This correlates to the yellow brown interval down to 11 m vertical depth in Figure 15.

Figure 15 shows RC drillhole MRC008, collar situated 8 m north of diamond drill hole MDD002. Wooden peg marks start of hole. Contact between limonitic mottled zone and dusky red saprolite at 11 m vertical depth. Contact between pyroxenite and underlying ultramafic marked by change from dusky red (haematite-rich) to light brown at 44 m.

Figure 12. Diamond drillhole MDD002 at 2.0 m

Figure 13. Diamond drillhole MDD002 at 2.6 m

Figure 14. Diamond drillhole MDD002 at 6.1 m

Figure 15. RC drillhole MRC008, Weathering and water table

The Medcalf Project lies on topographic highs some 50 m plus above the lower lying topography.

Distribution of the vanadium, iron and titanium deposits is controlled by several factors. One is depth of lateritic weathering, where weathering has increased grades to economic levels. As described in the Local geology Section, the depth of weathering is greater than 60 m and not one of Audalia's RC drillholes drilled in the deposits intersected the water table. The deepest hole was drilled to 102m from 413mRL.

The weathering profile is divided into four zones, lateritic residuum, mottled zone, saprolite and saprock. The strongest vanadium, iron and titanium grades have been developed near surface where the pyroxenite unit has been strongly weathered where most of the calcium, magnesium and silica have been removed from the rock by the lateritic weathering processes thus resulting in residual concentrations of vanadium and titanium.

Original silica minerals have been weathered to clay minerals predominately kaolinite but some gibbsite and diaspore. Magnetite is almost completely altered to hematite (martite) and goethite. Larger ilmenite grains have survived the weathering, but exsolved ilmenite platelets within other minerals have been altered to pseudorutile.

QEMSCAN (Figure 16) and XRD analysis (Figure 17 & Table 2) of 16 core samples taken from Audalia's core drilling programme in 2013, (MDD001 and MDD002) were carried out by Bureau Veritas (BV) in Canning Vale, Perth in 2013.

Neither the QEMSCAN nor the XRD studies were able to detect any vanadium minerals thus determining that vanadium was present in the samples as microscopic and sub microscopic constituents of hematite, goethite and several other iron minerals.

21

Figure 16. QEMSCAN mineral assay abundance data for 6 metallurgical composite core samples (Whittington 2013)

	Composition				MD	D01-				MDD02-							
Minerais	Composition	006	011	016	029	042	045	051	056	007	010	018	027	038	044	056	066
Quartz	SiO ₂	<1	<1	<1		<1	7	<1	<1	1	<1	<1				<1	28
Magnetite ¹	Fe ₃ O ₄						<1		3		<1					5	9
Hematite	Fe ₂ O ₃	18	26	41	60	36	<1	7	12	12	9	15	11	53	68	19	4
Goethite	FeO(OH)	7	14			7	29	75	56	37	6	4	2	6		15	44
Rutile ²	TiO ₂		1	2						3	1						<1
Anatase ²	TiO ₂	1			1					2	2						
Gibbsite	AI(OH) ₃													11	15		<1
Diaspore	AIO(OH)				2												1
Kaolin	Al ₂ Si ₂ O ₅ (OH) ₄	73	56	57	38	52	58	15	26	46	82	81	87	30	13	59	14
Mica Group ³	X ₂ Y ₄₋₆ Z ₈ O ₂₀ (OH,F) ₄						3										
Ilmenite	FeTiO ₃	2	2			5	<1	2	2					1	4	2	
Total		100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

Table 2. Results of quantitative mineralogy XRD from 16 samples (BV, 2013)

Figure 17. Graph of quantitative mineralogy by XRD, (BV, 2013)

ATTACHMENT B

DETAILS OF SAMPLING PROGRAMME

Graeme Campbell & Associates Pty Ltd

ATTACHMENT B

DETAILS OF SAMPLING PROGRAMME

1.0 SAMPLES INITIALLY COLLECTED IN EARLY 2019

- In early 2019, a set of 26 samples was selected for testing by Dr. GD Campbell following a review of the %S, and other assays, for 1m-intervals in the Project's geological database.
- Sample selection reflected the indicative pit-shells current at that time.
- The selected samples typically correspond to 3m-composites (i.e. 3 successive 1m-intervals composited).
- Assays from the geological database for the 'individual' 1m-intervals are presented in **Table B1**.

2.0 FINAL SAMPLE SET FOR THIS STUDY

- In light of refinements to the design of the pit-shells during 2019, 8 of the 3mcomposites initially selected were no longer relevant for testing.
- Although earlier pit-shells were projected to produce minor amounts of the Basalt (BAS) unit from the Fresh-Waste-Zone, subsequent pit-optimisations show that mining will not occur within the Fresh-Waste-Zone of any Pit.
- Refinement of the pit-shells reflects both economic optimisations, and increases in the buffer-zone associated with the areas of the <u>Declared Rare Flora (RDF)</u>.
- With the pit-shell revisions, the results presented and discussed in this study correspond to **18** samples (as 3m-composites).
 - Though the Pits will not delve into the Fresh-Waste-Zone, 4 samples of Fresh-Zone-Basalt from the Vesuvius Pit, and one Fresh-Zone-Basalt sample from neat the Pinatubo Pit, were tested as 'model-samples' of the Fresh-Zone-Basalt to be produced from the borrow-pit for TSF construction.
- The locations of the drillholes employed for sampling, together with pit-area geology, are shown on **Figure B1**.
- Though some drillholes are located outside the pit-footprints, the geologicprofiles sampled from these drillholes are representative of the <u>Mottled-Zone</u> and <u>Saprolite-Zone</u> making-up the waste-zones of both Pits.

In terms of S occurrences, for the waste-zones for both the <u>Vesuvius</u> and <u>Fuji</u> <u>Pits</u>, of just over 1,000 %S 'hits' (for 1m-intervals), the **mean-S value was 0.06** % to 50 m which is the depth of the pit-floors.

There were 5 %S 'hits' of 0.29 %, 0.32 %, 0.34 %, 0.90 %, and 1.63 % as outliers.

For the satellite <u>Egmont Pit</u>, 59 %S 'hits' for 2 PQ-holes had a **mean-S value of** 0.05 %. The depth of the Egmont Pit will be less than 50 m.

For the satellite <u>Pinatubo Pit</u>, 408 %S 'hits' for 13 PQ-holes had a **mean-S value** of 0.07 %. The depth of the Pinatubo Pit will be less than 50 m.

The above %S assays from the Project's geological database attest to the "Oxide-Only" nature of the waste-zones for all Pits (i.e. 'negligible-sulphides').

Samples_GC

Table B1: Original ARD Sample List Count

		26									I	Major-Ele	emental-	Oxides,	Chloride	e, and Lo	oss-on-l	gnition (L	.OI)		Min	or-Eleme	ents Asso	ociated v	vith Mir	neralisa	tion
IDs to be used							Weathering-	Ascribed		CaO	MgO	к20	Na2O	Fe2O3	AI2O3	SiO2	TiO2	MnO	CI LOI ₁₀	0oC	Ni	Cr	Co	Cu	Zn	Р	v
in ARD Study	Current IDs to be submitted to		Hole	Sample	From	То	Zone	Lithology	S						/	0.01			Gravin	etric		•.		•••			
(GCA)	GLS (Waddington)		ID	ID	(m)	(m)	(Regolith- Type)	(Parent- Rock)	(%)						%									mg/kg			
			MDD010	MDD10-007	6	7	MZ	UM	0.18	< 0.01	0.21	0.01	0.19	62.22	12.50	11.83	4.69	0.12	0.17	3.15	320	153	70	780	100	70	2,001
ARD_001	ARD10-69	1	MDD010	MDD10-008	7	8			0.16	<0.01	0.25	0.02	0.22	56.42	15.47	15.49	1.25	0.07	0.17 1	0.16	420	51	60	1,190	60	90	541
			MDD010	MDD10-009	8	9			0.11	<0.01	0.22	0.03	0.24	54.24	16.25	16.83	0.99	0.06	0.19 1	0.99	470	45	60	1,370	60	170	453
			MRC137	MD7664	0	1			0.08	0.09	0.33	0.17	0.10	32.84	18.68	35.54	0.97	0.02	1	0.89		54			90		422
ARD_002	MRC137 Sample15 0-3	1	MRC137	MD7665	1	2			0.09	0.02	0.12	0.14	0.19	28.43	20.97	38.11	0.81	0.01	1	1.10		82			70		415
			MRC137	MD7666	2	3			0.11	<0.01	0.12	0.15	0.27	29.82	22.99	33.34	0.78	0.01	1	2.35		8/			120		434
480 002	MPC129 Sample19 20 22	1	MRC139	MD7767	20	21			0.16	<0.01	0.07	0.02	0.17	63.66	10.23	11.56	2.55	0.08	1).12		3,660			20		51
ARD_003	WRC139 Sample19 20-25	1	MRC139	MD7769	21	22			0.14	<0.01	0.15	0.02	0.29	53.02	14.60	20.41	5.70	0.12	1).18		3,530			20		985
			MRC127	MD6391	0	1		GB	0.12	0.04	0.23	0.02	0.35	32.80	21.07	30.72	2 50	0.13	1	0.10		18			<50		1 579
ARD_004	MRC127 Sample9 0-3	1	MRC127	MD6392	1	2		35	0.04	0.54	0.29	0.17	0.32	17.98	24.78	40.54	3.14	0.03	1	1.37		<10			<50		812
-			MRC127	MD6393	2	3			0.04	0.23	0.23	0.23	0.33	15.81	26.58	41.55	2.83	0.02	1	1.63		<10			<50		667
			MRC130	MD6648	1	2			0.04	0.02	0.12	0.28	0.23	8.70	29.57	44.91	4.25	0.02	1	1.49		<10			<50		1,107
ARD_005	MRC130 Sample11 1-4	1	MRC130	MD6649	2	3			0.05	0.01	0.14	0.28	0.31	9.25	28.71	46.06	3.79	0.02	1	1.38		<10			<50		900
			MRC130	MD6650	3	4			0.06	0.01	0.12	0.25	0.31	15.52	26.78	41.98	3.94	0.02	1	0.99		<10			<50		1,195
			MRC125	MD6250	1	2		BAS	0.09	0.03	0.11	0.10	0.31	15.05	27.33	41.57	3.13	0.01	1	1.83		480			<50		850
ARD_006	MRC125 Sample1 1-4	1	MRC125	MD6251	2	3			0.11	0.02	0.07	0.07	0.13	28.31	21.43	32.67	5.30	0.02	1	1.34		280			<50		970
			MRC125	MD6252	3	4			0.19	0.01	0.09	0.08	0.25	43.82	15.74	23.58	3.12	0.05	1	2.72		570			<50		570
455 447			MRC125	MD6263	14	15			0.12	0.01	0.17	0.11	0.44	17.32	24.15	44.46	1.40	0.03	1	1.21		560			<50		300
ARD_007	MRC125 Sample2 14-17	1	MRC125	MD6264	15	16			0.14	0.01	0.19	0.07	0.47	19.84	23.25	42.42	1.39	0.03	1	1.58		500			<50		370
			WIRC125	IVID6265	10	1/			0.13	0.01	0.27	0.11	0.44	19.84	24.42	40.90	1.38	0.04	1	1.73		510			60		370
		1		MDD10 019	17	10	CD.	115.4	0.07	0.02	0.21	0.02	0.65	44.52	10.42	22.20	2 22	0.15	0.47	0 5 0	200	408	-50	070	20	40	701
ARD 008	ARD10-1720	1		MDD10-018	1/	10	Sr	UIVI	0.07	0.02	0.21	0.03	0.65	44.53	15.43	19 13	3.22	0.15	0.47	9.58	540	408	<50 50	2 090	08 00	40	5/1
/	/11.010 1/20	-	MDD010	MDD10-015	19	20			0.10	0.02	0.15	0.03	0.74	48.02	16.56	19.65	1.61	0.10	0.59 1	1.47	590	561	60	1,970	90	50	403
			MRC137	MD7676	12	13			0.07	< 0.01	0.21	0.10	0.34	36.22	17.03	26.96	5.92	0.06	1).77		807			460		1.346
ARD_009	MRC137 Sample16 12-15	1	MRC137	MD7677	13	14			0.07	< 0.01	0.28	0.04	0.34	44.09	15.57	19.89	4.93	0.11	1	1.17		1,338			780		1,120
			MRC137	MD7678	14	15			0.07	< 0.01	0.26	0.04	0.37	45.30	14.73	21.25	3.38	0.11	1	1.49		1,108			680		1,070
			MRC137	MD7692	27	28			0.07	0.03	5.57	0.07	0.82	38.76	12.80	25.16	5.81	0.43		3.69		365			460		1,082
ARD_010	MRC137 Sample17 27-30	1	MRC137	MD7693	28	29			0.06	0.02	2.62	0.08	0.75	35.69	15.53	27.47	6.46	0.19		9.52		263			300		1,384
			MRC137	MD7694	29	30			0.04	0.02	1.32	0.07	0.61	40.79	14.54	26.08	4.03	0.16	1	0.76		166			340		1,032
			MRC137	MD7707	41	42			0.05	6.75	13.19	0.39	0.98	22.85	5.23	43.30	1.72	0.24		4.03		167			130		333
ARD_011	MRC137 Sample18 41-44	1	MRC137	MD7708	42	43			0.02	6.52	13.37	0.59	0.99	20.41	5.64	44.83	1.88	0.22		4.23		208			160		340
			MRC137	MD7709	43	44			0.02	6.46	14.32	0.40	0.91	19.75	4.64	46.46	1.67	0.23	1.22	3.74	000	211	220	2 6 1 0	140	20	302
ARD 012	ARD6-2124	1	MDD006	MDD06-022	21	22			0.11	0.03	0.83	0.03	1.21	68.50	6.60	7.46	6.05 E 11	0.35	1.22	2 00 2	2,030	584	330	2,610	100	30	1,195
AND_012	AND0-2124	1	MDD006	MDD06-023	22	23			0.12	0.03	0.76	0.03	0.97	68.10	7 24	7.49 8.41	5.11	0.34	1.54	7 39 2	200 2870	469	480	2,180	170	40	994
			MDD006	MDD06-059	58	59			0.11	0.03	6 11	0.05	1 16	50.98	2.04	31 51	0.62	0.51	0.33	5 98 3	3 170	-30	460	2 010	350	140	132
ARD_013	ARD6-5860	1	MDD006	MDD06-060	59	60			0.04	0.01	5.33	0.10	1.12	42.22	1.70	42.27	0.49	0.61	0.42	5.19 3	3.430	26	450	1.440	330	130	94
_			MDD006	MDD06-061	60	60.8			0.04	0.02	3.48	0.07	0.99	42.74	1.77	44.39	0.55	0.51	0.70	4.95 3	3,090	34	420	840	280	170	120
			MDD009	MDD09-037	36	37			0.04	0.02	9.29	0.07	1.16	34.30	4.78	39.83	1.68	0.51	0.71	5.12 3	3,550	488	550	2,640	300	260	315
ARD_014	ARD9-3639	1	MDD009	MDD09-038	37	38			0.03	0.02	13.84	0.10	1.20	35.89	7.80	28.66	1.91	0.85	0.38	7.43 4	1,580	572	730	2,110	390	150	346
			MDD009	MDD09-039	38	39.2			0.02	0.04	11.93	0.12	1.07	33.17	5.02	38.12	1.86	0.59	0.31	5.97 3	3,890	600	560	1,660	310	70	327
			MRC130	MD6729	81	82	SP	PX	0.01	0.76	12.57	0.02	0.12	41.04	3.20	33.48	3.95	0.27		3.60		105			240		1,441
ARD_015	MRC130 Sample13 81-84	1	MRC130	MD6731	82	83			0.01	2.57	16.40	0.02	0.13	35.32	3.40	36.31	1.43	0.32		3.97		17			250		409
			MRC130	MD6732	83	84			0.02	4.11	15.26	0.04	0.24	36.07	4.17	31.40	1.04	0.57		o.56		10			250		201
400.010	MDC120 Complet4 02 05	1	MRC130	MD6741	92	93			0.01	2.88	14.02	0.03	0.12	25.45	2.39	49.52	0.60	0.56		3.69		12			140		107
AKD_016	MRC150 Sample14 92-95	1	MRC130	MD6742	93	94			0.01	8.57	18.92	0.02	0.08	21.70	2.15	37.30	0.59	0.41	1	5.31		11			100		94
			MPC127	MD6402	12	12	S D	GR	0.04	1.26	10.51	1 79	1.26	20.38	15.01	42.33	4.02	0.37		1 6 1		-10 -10			200		1 010
ARD 017	MRC127 Sample10 12-15	1	MRC127	MD6404	13	14	37	60	0.02	4.50 5,18	4.07 5.04	1.65	1.20	20.91	14.43	43.41	4.03	0.13		3.71		<10			200		969
			MRC127	MD6405	14	15			0.02	3.72	4.27	1.20	1.09	26.09	13.64	39.26	4.65	0.16		5.35		10			300		1,139
			MRC130	MD6662	15	16			0.03	0.19	0.86	0.23	0.51	53.53	8.03	20.68	10.30	0.67	1	1.64		<10			370		2,970
ARD_018	MRC130 Sample12 15-18	1	MRC130	MD6663	16	17			0.02	3.06	3.46	0.37	0.56	44.56	7.24	26.31	9.21	0.71		3.50		<10			310		2,573
			MRC130	MD6664	17	18			0.02	4.55	4.22	0.31	0.52	43.29	5.59	26.68	9.10	0.68		3.63		<10			310		2,567
			MRC125	MD6274	25	26	SP	BAS	0.04	0.06	1.44	0.23	0.91	21.02	20.86	42.54	1.28	0.57	1).27		600			160		330
ARD_019	MRC125 Sample3 25-28	1	MRC125	MD6275	26	27			0.03	0.07	0.99	0.17	0.95	18.74	20.52	45.81	1.18	0.56	1	0.16		690			220		280
			MRC125	MD6276	27	28			0.03	0.16	0.96	0.20	1.07	16.99	20.26	48.79	1.14	0.20		9.64		1,880			280		260
			MRC125	MD6288	39	40			0.02	0.24	4.49	0.25	1.34	27.06	14.56	39.59	2.67	0.39		3.40		530			300		470
ARD_020	MRC125 Sample4 39-42	1	MRC125	MD6289	40	41			0.02	0.11	5.67	0.54	1.32	20.33	19.12	41.05	1.35	0.83		9.06		440			380		420
		<u> </u>	MRC125	ND6290	41	42			0.02	3.60	3.88	0.25	1.91	15.06	17.14	50.91	1.15	0.17		5.65		360			150		250

											Sampl	es_GC															
		26									1	Major-Ele	emental	-Oxides,	Chlorid	e, and Lo	oss-on-l	gnition (I	.OI)		Mir	or-Elem	ents Ass	ociate	d with M	ineralis	ation
IDs to be used in ARD Study	Current IDs to be submitted to	1	Hole	Sample	From	То	Weathering- Zone	Ascribed Lithology	S	CaO	MgO	К2О	Na2O	Fe2O3	Al2O3	SiO2	TiO2	MnO	Cl	LOI _{1000oC} Gravimetric	Ni	Cr	Co	Cu	Zn	Р	v
(GCA)	GLS (Maddington)]	ID	ID	(m)	(m)	(Regolith- Type)	(Parent- Rock)	(%)						%									mg/kg	(
			•				•							•		•		•				•		•			
			MRC125	MD6292	43	44	FR	BAS	0.01	8.57	6.63	0.20	2.57	12.28	15.47	50.87	0.82	0.15		2.32		350			80	(270
ARD_021	MRC125 Sample5 43-46	1	MRC125	MD6293	44	45			0.01	6.68	5.54	0.31	2.24	12.84	16.10	51.05	0.86	0.28		3.59		320			80	1	250
			MRC125	MD6294	45	46			0.01	9.12	7.02	0.20	2.18	12.22	15.09	51.16	0.83	0.19		1.73		320			70) 	280
			MRC125	MD6296	47	48			0.01	10.21	7.38	0.23	2.13	11.90	14.78	51.11	0.82	0.17		1.06		320			70	1	280
ARD_022	MRC125 Sample6 47-50	1	MRC125	MD6297	48	49			0.01	10.35	7.39	0.26	2.27	12.03	14.70	50.37	0.83	0.17		1.23		300			70		310
			MRC125	MD6298	49	50			0.01	10.54	7.52	0.23	2.49	11.77	14.64	50.83	0.81	0.17		0.81		310			70	·	300
			MRC125	MD6301	52	53			<0.01	10.71	7.66	0.23	2.54	11.91	14.65	50.39	0.82	0.17		0.71		310			70	·	300
ARD_023	MRC125 Sample7 52-55	1	MRC125	MD6302	53	54			< 0.01	10.59	7.62	0.17	2.47	11.75	14.60	50.39	0.81	0.17		0.68		310			70		300
			MRC125	MD6303	54	55			<0.01	10.81	7.70	0.16	2.35	11.87	14.71	50.17	0.81	0.17		0.72		310			70	┢────	300
			MRC125	MD6306	57	58			< 0.01	10.55	7.84	0.13	2.50	12.05	14.81	50.07	0.81	0.17		0.72		300			60		311
ARD_024	MRC125 Sample8 57-60	1	MRC125	MD6307	58	59			< 0.01	10.26	7.69	0.13	2.71	11.89	14.92	50.54	0.83	0.17		0.64		310			70	<u> </u>	310
			MRC125	MD6308	59	60			0.01	10.68	7.78	0.13	2.56	11.88	14.77	50.38	0.83	0.17		0.59					70	<u> </u>	
455 455			PTC006	MD5238	21	22			0.01	10.52	7.31	0.55	1.69	18.38	12.84	43.60	3.47	0.16		1.18		135			100	<u></u>	790
ARD_025	P1C006 Sample24 21-24	1	PTC006	MD5239	22	23			0.01	10.80	7.38	0.51	1.80	18.45	12.73	43.56	3.38	0.16		0.92		135			100		790
		-	PICODE	IVID5240	23	24			0.01	10.44	7.28	0.61	1.72	19.00	11.60	44.03	3.55	0.17		1.27		135			100	<u> </u>	845
			KJC020	WD4874	25	26			0.02	11.35	7.60	1.20	1.98	11.06	12.76	51.25	0.68	0.20		1.42		610			100	<u> </u>	225
	KIC020 Sample 21 25 20	1	KJC020	IVID4875	20	2/			0.01	11.55	7.83	0.77	2.45	11.37	12.97	49.93	0.69	0.19		1.52		610			100	<u></u>	225
AND_020	13C020 Sample21 23-30	1	KJC020	MD4876	2/	28			0.01	10.05	7.89	0.03	2.58	11.13	12.85	50.38	0.69	0.20		1.54		610			100	, 	283
			KJC020	MD4878	20	30			0.11	10.35	8.30	0.81	2.50	11.23	12.61	51.54	0.70	0.20		1.34		610			100	,	225

ATTACHMENT C

LABORATORY REPORTS

Graeme Campbell & Associates Pty Ltd

MINERALS TEST REPORT

CLIENT

GRAEME CAMPBELL

CAMPBELL, GRAEME and ASSOCIATES PO Box 247 BRIDGETOWN, W.A. 6255 AUSTRALIA

JOB INFORMATION

JOB CODE : 143.0/1902366 NO. SAMPLES : 26 NO. ELEMENTS : 7 CLIENT ORDER NO. : GCA1901/1 (Job 1 of 1) SAMPLE SUBMISSION NO. : PROJECT : MEDCALF SAMPLE TYPE : Various DATE RECEIVED : 20/02/2019 DATE REPORTED : 21/03/2019 DATE PRINTED : 21/03/2019

REPORT NOTES

TESTED BY

Intertek

15 Davison Street, Maddington 6109, Western Australia

PO Box 144, Gosnells 6990, Western Australia

Tel: +61 8 9251 8100

Email: min.aus.per@intertek.com Accredited for compliance with ISO/IEC 17025. Company Accreditation Number 3244

This report relates specifically to the sample(s) tested that were drawn and/or provided by the client or their nominated third party to Intertek. The reported result(s) provide no warranty or verification on the sample(s) representing any specific goods and/or shipment. This report was prepared solely for the use of the client named in this report. Intertek accepts no responsibility for any loss, damage or liability suffered by a third party as a result of any reliance upon or use of this report. The results provided are not intended for commercial settlement purposes.

Except where explicitly agreed in writing, all work and services performed by Intertek is subject to our standard Terms and Conditions which can be obtained at our website: intertek.com/terms/ JOB NO: 143.0/1902366

CLIENT REF: GCA1901/1

NOTES NATA ENDORSED DOCUMENT Company Accreditation Number 3244

Analysing Laboratory: Intertek Genalysis Perth

The contents of this report have been prepared in accordance with the terms of NATA accreditation and as such should only be reproduced in full.

The analysis results reported herein have been obtained using the following methods and conditions:

Project:Medcalf

The samples as listed were received as mine waste samples

The samples were coarse crushed to nominal -5mm .

Approx 1.5kgs of the corse crushings were crushed to nominal -2mm.

A split was taken from each sample and fine pulverised to nominal

-75um using a zirconia bowl.

The results have been determined according to Genalysis methods codes Digestions : MPL_W005 (SE1/), ENV_W012 (FC7/SIE), and MPL_W008 (HG1/

Analytical Finishes: ICP_W003 (/MS) and AAS_W004 (/CV)

1.Total-C and Total-S were determined using an induction furnace The samples are ignited in oxygen ~1700°C and the CO2 and SO2 measured by infrared detectors Genalysis method code MPL_W043.

2.C-Acinsol (acid insoluble carbon) by a C&S analyser after removal of carbonates and soluble organic carbon using hot hydrochloric acid Genalysis method code MPL W046

The results included the assay of blanks and international reference standards: GTS-2a, AMIS0343,OREAS 45e and DS-1 Genalysis in house standards: TOC-1a, and OREAS 97.01 The results are expressed as parts per million or percent by mass in the dried and prepared material.

Intertek Genalysis signatory

Ann Patricia EVERS Chief Chemist

Ann Evers

Date: 21-Mar-2019

This report relates specifically to the sample(s) tested that were drawn and/or provided by the client or their nominated third party to Intertek. The reported result(s) provide no warranty or verification on the sample(s) representing any specific goods and/or shipment. This report was prepared solely for the use of the client named in this report. Intertek accepts no responsibility for any loss, damage or liability suffered by a third party as a result of any reliance upon or use of this report. The results provided are not intended for commercial settlement purposes.

Except where explicitly agreed in writing, all work and services performed by Intertek is subject to our standard Terms and Conditions which can be obtained at our website: intertek.com/terms/ JOB NO: 143.0/1902366

CLIENT REF : GCA1901/1

SIGNIFICANT FIGURES

It is common practice to report data derived from analytical instrumentation to a maximum of two or three significant figures. Some data reported herein may show more figures than this. The reporting of more than two or three figures in no way implies that figures beyond the least significant digit have significance.

For more information on the uncertainty on individual reported values, please contact the laboratory.

SAMPLE STORAGE

All solid samples (assay pulps, bulk pulps and residues will be stored for 60 days without charge. Following this samples will be stored at a daily rate until clients written advice regarding return, collection or disposal is received. If storage information is not supplied on the submission, or arranged with the laboratory in writing the default will be to store the samples with the applicable charges. Storage is charged at \$4.00 per m3 per day, expenses related to the return or disposal of samples will be charged at cost. Current disposal cost is charged at \$150.00 per m3.

Samples received as liquids, waters or solutions will be held for 60 days free of charge then disposed of, unless written advice fo return or collection is received.

LEGEND	х	= Less than Detection Limit	NA	= Not Analysed
	SNR	= Sample Not Received	UA	= Unable to Assay
	*	= Result Checked	>	= Value beyond Limit of Method
	DTF	= Result still to come	+	= Extra Sample Received Not Listed
	IS	= Insufficient Sample for Analysis		

	~ ~ ~	A oire - I	C C C C C	-	11-	<u> </u>	6-	
	ι (·	-ACINSOI	L-LU3	F	Hg	5	Se	
	%	%	%	ppm	ppm	%	ppm	
	0.01	0.01	0.01	50	0.01	0.01	0.01	
	100.0	C/1/	10410	FC7/	HG1/	1000	SE1/	
ANALY IICAL FINISH	/CSA	CSA	/CALC	SIE	CV	/CSA	MS	
SAMPLE NUMBERS								
0001 ARD_001	0.13	0.05	0.08	471	0.02	0.18	3.33	
0002 ARD_002	0.25	0.12	0.13	241	0.01	0.12	2.41	
0003 ARD_003	0.08	0.06	0.02	212	0.02	0.15	1.34	
0004 ARD_004	0.21	0.05	0.16	242	0.01	0.05	1.05	
0005 ARD_005	0.12	0.05	0.07	251	Х	0.07	1.02	
0006 ARD_006	0.16	0.07	0.09	281	0.01	0.17	1.61	
0007 ARD_007	0.11	0.10	Х	225	Х	0.14	0.11	
0008 ARD_008	0.08	0.06	0.02	363	0.01	0.10	3.68	
0009 ARD_009	0.12	0.09	0.03	446	0.02	0.08	1.87	
0010 ARD_010	0.06	0.07	Х	304	Х	0.06	0.77	
0011 ARD_011	0.18	0.18	Х	494	0.01	0.03	0.99	
0012 ARD_012	0.11	0.06	0.05	194	0.01	0.12	0.69	
0013 ARD_013	0.04	0.04	Х	167	0.01	0.05	0.08	
0014 ARD_014	0.02	0.04	Х	1695	0.02	0.04	0.08	
0015 ARD_015	0.09	0.02	0.07	736	0.02	0.02	0.11	
0016 ARD_016	2.16	0.02	2.14	335	0.02	0.02	0.15	
0017 ARD_017	0.02	0.03	Х	932	0.01	0.02	Х	
0018 ARD_018	0.07	0.04	0.03	642	Х	0.03	0.09	
0019 ARD_019	0.09	0.08	Х	229	0.01	0.04	0.12	
0020 ARD_020	0.06	0.06	х	272	0.02	0.02	0.03	
0021 ARD_021	0.02	0.04	Х	456	Х	0.01	0.02	
0022 ARD_022	0.01	0.03	х	422	Х	х	0.02	
0023 ARD_023	0.04	0.02	0.02	629	Х	х	0.03	
0024 ARD_024	0.02	0.02	х	503	Х	х	0.03	
0025 ARD_025	0.02	0.04	х	310	Х	х	х	
0026 ARD_026	Х	0.03	Х	1889	Х	0.01	0.06	
CHECKS								
0001 ARD_002	0.28	0.12	0.16	236	Х	0.11	2.30	
STANDARDS								
0001 OREAS 45e	0.57					0.06		
0002 TOC-1a		1.14						
0003 GTS-2a					0.27			
0004 OREAS 97.01							0.64	
0005 AMIS0343				2240				
BLANKS								
0001 Control Blank	Х	Х		Х	Х	Х	Х	

METHOD CODE DESCRIPTION

Method Code	Analysing Laboratory	NATA Scope of Accreditation
/CALC	Intertek Genalysis Perth 3244 3237	<u>.</u>
	No digestion or other pre-treat from other reported data.	ment undertaken. Results Determined by calculation
/CSA	Intertek Genalysis Perth 3244 3237	MPL_W043, CSA : MPL_W043
	Induction Furnace Analysed by	Infrared Spectrometry
C71/CSA	Intertek Genalysis Perth 3244 3237	
	Digestion by hot acid(s) and Inc	luction Furnace Analysed by Infrared Spectrometry
FC7/SIE	Intertek Genalysis Perth 3244 3237	ENV_W012, SIE : ENV_W012
	Alkaline fusion (Nickel crucible)	specific for Fluorine. Analysed by Specific Ion Electrode.
HG1/CV	Intertek Genalysis Perth 3244 3237	
	Low temperature Perchloric ac Generation Atomic Absorption	id digest specific for Mercury. Analysed by Cold Vapour Spectrometry.
SE1/MS	Intertek Genalysis Perth 3244 3237	
	Aqua-Regia digest followed by Analysed by Inductively Couple	Precipitation and Concentration. Specific for Selenium. d Plasma Mass Spectrometry.

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Graeme Campbell	Manager	Marjana Siljanoska
Client	Graeme Campbell & Associates Pty Ltd	Laboratory	SGS Perth Environmental
Address	PO Box 247 Bridgetown WA 6255	Address	28 Reid Rd Perth Airport WA 6105
Telephone	0897 612 829	Telephone	(08) 9373 3500
Facsimile	0897 612 830	Facsimile	(08) 9373 3556
Email	gca@wn.com.au	Email	au.environmental.perth@sgs.com
Project	GCA Job No. 1901/1 For CRS	SGS Reference	PE133544 R0
Order Number	GCA Job No.1901/1	Date Received	22 Mar 2019
Samples	26	Date Reported	01 Apr 2019

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(898/20210).

SIGNATORIES .

mchaynd

Michael McKay Inorganics and ARD Supervisor

28 Reid RdPerth Airport WA 6105PO Box 32Welshpool WA 6983

PE133544 R0

	Sample	Number	PE133544.001	PE133544.002
	Sampl	le Matrix	Pulp	Pulp
	Sam	ple Date	21 Mar 2019	21 Mar 2019
	Samp	le Name	ARD_001	ARD_002
Parameter	Units	LOR		

Chromium Reducible Sulphur (Scr)	%	0.005	<0.005	<0.005
Chromium Reducible Sulphur (Scr)	moles H+/T	5	<5	<5
Chromium Reducible Sulphur (Scr)	kg H2SO4/T	0.25	<0.25	<0.25

PE133544 R0

	Sample	Number	PE133544.003	PE133544.004
	Samp	le Matrix	Pulp	Pulp
	Sam	ple Date	21 Mar 2019	21 Mar 2019
	Samp	le Name	ARD_003	ARD_004
Parameter	Units	LOR		

Chromium Reducible Sulphur (Scr)	%	0.005	<0.005	<0.005
Chromium Reducible Sulphur (Scr)	moles H+/T	5	<5	<5
Chromium Reducible Sulphur (Scr)	kg H2SO4/T	0.25	<0.25	<0.25

PE133544 R0

	Sample	Number	PE133544.005	PE133544.006
	Samp	le Matrix	Pulp	Pulp
	Sam	ple Date	21 Mar 2019	21 Mar 2019
	Samp	le Name	ARD_005	ARD_006
Parameter	Units	LOR		

Chromium Reducible Sulphur (Scr)	%	0.005	<0.005	<0.005
Chromium Reducible Sulphur (Scr)	moles H+/T	5	<5	<5
Chromium Reducible Sulphur (Scr)	kg H2SO4/T	0.25	<0.25	<0.25

PE133544 R0

	Sample Number		PE133544.007	PE133544.008
	Sample Matrix		Pulp	Pulp
	Sample Date		21 Mar 2019	21 Mar 2019
	Sample Name		ARD_007	ARD_008
Parameter	Units	LOR		

Chromium Reducible Sulphur (Scr)	%	0.005	<0.005	<0.005
Chromium Reducible Sulphur (Scr)	moles H+/T	5	<5	<5
Chromium Reducible Sulphur (Scr)	kg H2SO4/T	0.25	<0.25	<0.25

PE133544 R0

	Sample Number		PE133544.009	PE133544.010
	Sample Matrix		Pulp	Pulp
	Sample Date		21 Mar 2019	21 Mar 2019
	Sample Name		ARD_009	ARD_010
Parameter	Units	LOR		

Chromium Reducible Sulphur (Scr)	%	0.005	<0.005	<0.005
Chromium Reducible Sulphur (Scr)	moles H+/T	5	<5	<5
Chromium Reducible Sulphur (Scr)	kg H2SO4/T	0.25	<0.25	<0.25

PE133544 R0

	Sample Number		PE133544.011	PE133544.012
	Sample Matrix		Pulp	Pulp
	Sample Date		21 Mar 2019	21 Mar 2019
	Sample Name		ARD_011	ARD_012
Parameter	Units	LOR		

Chromium Reducible Sulphur (Scr)	%	0.005	<0.005	<0.005
Chromium Reducible Sulphur (Scr)	moles H+/T	5	<5	<5
Chromium Reducible Sulphur (Scr)	kg H2SO4/T	0.25	<0.25	<0.25

PE133544 R0

	Sample Number		PE133544.013	PE133544.014
	Sample Matrix		Pulp	Pulp
	Sample Date		21 Mar 2019	21 Mar 2019
	Sample Name		ARD_013	ARD_014
Parameter	Units	LOR		

Chromium Reducible Sulphur (Scr)	%	0.005	<0.005	<0.005
Chromium Reducible Sulphur (Scr)	moles H+/T	5	<5	<5
Chromium Reducible Sulphur (Scr)	kg H2SO4/T	0.25	<0.25	<0.25

PE133544 R0

	Sample Number		PE133544.015	PE133544.016
	Sample Matrix		Pulp	Pulp
	Sample Date		21 Mar 2019	21 Mar 2019
	Sample Name		ARD_015	ARD_016
Parameter	Units	LOR		

Chromium Reducible Sulphur (Scr)	%	0.005	<0.005	<0.005
Chromium Reducible Sulphur (Scr)	moles H+/T	5	<5	<5
Chromium Reducible Sulphur (Scr)	kg H2SO4/T	0.25	<0.25	<0.25

PE133544 R0

	Sample Number		PE133544.017	PE133544.018
	Sample Matrix		Pulp	Pulp
	Sample Date		21 Mar 2019	21 Mar 2019
	Sample Name		ARD_017	ARD_018
Parameter	Units	LOR		

Chromium Reducible Sulphur (Scr)	%	0.005	<0.005	0.006
Chromium Reducible Sulphur (Scr)	moles H+/T	5	<5	<5
Chromium Reducible Sulphur (Scr)	kg H2SO4/T	0.25	<0.25	<0.25

PE133544 R0

	Sample Number		PE133544.019	PE133544.020
	Sample Matrix		Pulp	Pulp
	Sample Date		21 Mar 2019	21 Mar 2019
	Sample Name		ARD_019	ARD_020
Parameter	Units	LOR		

Chromium Reducible Sulphur (Scr)	%	0.005	0.007	<0.005
Chromium Reducible Sulphur (Scr)	moles H+/T	5	<5	<5
Chromium Reducible Sulphur (Scr)	kg H2SO4/T	0.25	<0.25	<0.25

PE133544 R0

	Sample Number		PE133544.021	PE133544.022
	Sample Matrix		Pulp	Pulp
	Sample Date		21 Mar 2019	21 Mar 2019
	Sample Name		ARD_021	ARD_022
Parameter	Units	LOR		

Chromium Reducible Sulphur (Scr)	%	0.005	<0.005	<0.005
Chromium Reducible Sulphur (Scr)	moles H+/T	5	<5	<5
Chromium Reducible Sulphur (Scr)	kg H2SO4/T	0.25	<0.25	<0.25

PE133544 R0

	Sample Number		PE133544.023	PE133544.024
	Sample Matrix		Pulp	Pulp
	Sample Date		21 Mar 2019	21 Mar 2019
	Sample Name		ARD_023	ARD_024
Parameter	Units	LOR		

Chromium Reducible Sulphur (Scr)	%	0.005	<0.005	<0.005
Chromium Reducible Sulphur (Scr)	moles H+/T	5	<5	<5
Chromium Reducible Sulphur (Scr)	kg H2SO4/T	0.25	<0.25	<0.25

PE133544 R0

	Sample Number		PE133544.025	PE133544.026
	Sample Matrix		Pulp	Pulp
	Sample Date		21 Mar 2019	21 Mar 2019
	Sample Name		ARD_025	ARD_026
Parameter	Units	LOR		

Chromium Reducible Sulphur (Scr)	%	0.005	<0.005	<0.005
Chromium Reducible Sulphur (Scr)	moles H+/T	5	<5	<5
Chromium Reducible Sulphur (Scr)	kg H2SO4/T	0.25	<0.25	<0.25

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Chromium Reducible Sulphur (CRS) Method: ME-(AU)-[ENV]AN217

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Chromium Reducible Sulphur (Scr)	LB157738	%	0.005	<0.005	0%	91%
Chromium Reducible Sulphur (Scr)	LB157738	moles H+/T	5	<5		
Chromium Reducible Sulphur (Scr)	LB157738	kg H2SO4/T	0.25	<0.25		

METHOD SUMMARY

- METHOD -

METHODOLOGY SUMMARY

AN217

Dried pulped sample is mixed with acid and chromium metal in a rapid distillation unit to produce hydrogen sulfide (H2S) which is collected and titrated with iodine (I2(aq)) to measure SCR.

FOOTNOTES _

IS	Insufficient sample for analysis.
LNR	Sample listed, but not received.

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- LOR Limit of Reporting
- ↑↓ Raised or Lowered Limit of Reporting
- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance
 - The sample was not analysed for this analyte
- NVL Not Validated

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

- Note that in terms of units of radioactivity:
 - a. 1 Bq is equivalent to 27 pCi
 - b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : <u>http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf</u>

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

Graeme Campbell & Associates Pty Ltd Laboratory Report

SAMPLE_	SAMPLE		EC-(1:2)	
ID	WEIGHT	pH-(1:2)	(µS/cm)	
	(g)			
ARD_001	29.9	4.8	3,030	
ARD_002	30.1	3.9	2,180	
ARD_003	30.0	4.3	4,010	
ARD_004	30.0	8.4	2,390	
ARD_005	29.9	4.0	3,680	
ARD_006	30.1	3.7	4,140	
ARD_007	30.0	3.7	7,470	
ARD_008	29.9	6.7	9,610	
ARD_009	30.0	5.3	5,920	
ARD_010	30.1	6.7	4,310	centrifuged
ARD_010 d	30.0	6.7	4,370	centrifuged
ARD_011	30.1	7.5	2,400	
ARD_012	30.0	6.0	19,200	
ARD_013	30.1	6.8	9,240	
ARD_014	29.9	6.9	6930	
ARD_015	30.1	8.6	912	
ARD_016	30.0	8.6	965	
ARD_017	30.0	7.2	1,630	
ARD_018	30.1	5.7	1,740	centrifuged
ARD_019	30.0	5.6	5,850	centrifuged
ARD_020	29.9	6.8	3,130	centrifuged
ARD_020 d	30.0	6.8	3,050	centrifuged
ARD_021	30.1	8.4	710	
ARD_022	29.9	8.9	276	
ARD_023	30.0	9.1	157	
ARD_024	30.0	8.9	191	
ARD_025	30.1	8.7	568	
ARD_026	30.1	8.8	831	

pH-(1:2) & EC-(1:2) TESTWORK

Testwork performed on fine-crushings (-2 mm nominal).

pH-(1:2) and EC=(1:2) values correspond to pH and EC values for suspensions prepared with deionised-water. and a solid:solution ratio of *ca*. 1:2 (w/w) [i.e. approx. 30 g solids + 60 mL DW).

Test-suspensions allowed to 'age' / 'breathe' / equilibrate for ca. 1 day before pH and EC determinations.

Test-suspensions were stirred with a spatula twice during ageing / equilibration.

Testwork performed in a CT-room (viz. 20 +/- 2 oC).

'centrifuged' means that insifficient clear supernatant could be decanted for EC measurement. Accordingly, the 'clay-slop' was subjected to centrifugation to generate a clear centrifugate for EC measurement.

ACID-NEUTRALISATION-CAPACITY (ANC) TESTWORK: BASED ON AMIRA (2002) WITH VARIATIONS TO CONSTRAIN DISSOLUTION OF NON-CARBONATE-MINERALS UNRELATED TO CIRCUM-NEUTRAL BUFFERING SAVE FOR VANISHINGLY-SMALL RATES OF PYRITE OXIDATION

SAMPLE		I	ICI	milli	Digest-	N	aOH	milli	pН	BULK-	
		Conc.	Pipette	moles	Slurry-	Conc.	Titre	moles	after	ANC	
ID	WT		Volume	H+	Final-		Volume	OH-	H2O2	(kg H2SO4/	
	(g)	(M)	(mL)	Added	рН	(M)	(mL)	Added	Added	tonne)	
ARD_007	15.01	0.10	10	1.00	1.9	0.05	25.45	1.273	> 4.0	-1	
ARD_010	15.03	0.10	10	1.00	2.9	0.05	7.20	0.360	> 4.0	2	magnetite
ARD_011	15.03	0.10	10	1.00	3.2	0.05	4.60	0.230	> 4.0	3	magnetite
ARD_013	15.01	0.10	10	1.00	2.9	0.05	6.10	0.305	> 4.0	2	magnetite
ARD_014	15.01	0.10	10	1.00	2.8	0.05	6.25	0.313	> 4.0	2	magnetite
ARD_014 d	14.99	0.10	10	1.00	2.7	0.05	5.70	0.285	> 4.0	2	
ARD_017	14.99	0.10	10	1.00	2.3	0.05	10.20	0.510	> 4.0	2	
ARD_019	15.03	0.10	10	1.00	2.9	0.05	10.50	0.525	> 4.0	2	magnetite
ARD_020	15.01	0.10	10	1.00	3.7	0.05	6.90	0.345	> 4.0	2	
ARD_021	15.01	0.10	10	1.00	2.5	0.05	7.40	0.370	> 4.0	2	
ARD_022	14.99	0.10	10	1.00	2.5	0.05	8.25	0.413	> 4.0	2	
ARD_022 d	15.03	0.10	10	1.00	2.6	0.05	8.55	0.428	> 4.0	2	
ARD_024	14.97	0.10	10	1.00	2.2	0.05	9.10	0.455	3.8	2	
ARD_025	14.99	0.10	10	1.00	2.5	0.05	7.30	0.365	> 4.0	2	
ARD_026	14.98	0.10	10	1.00	2.7	0.05	6.25	0.313	> 4.0	2	
ARD_003	10.00	0.10	10	1.00	1.7	0.05	21.20	1.060	> 4.0	< 1	
ARD_008	10.00	0.10	10	1.00	1.8	0.05	12.80	0.640	> 4.0	2	magnetite
ARD_008 d	9.97	0.10	10	1.00	1.8	0.05	12.95	0.648	> 4.0	2	magnetite
ANC Std	5.00	0.10	25	2.50	2.2	0.05	7.70	0.385	> 4.0	21	
ANC Std d	5.01	0.10	25	2.50	2.2	0.05	7.75	0.388	> 4.0	21	
0.1 M-HCl	-	0.10	10	1.00		0.05	20.15	1.01		100.8%	
0.1 M-HCl (d)	-	0.10	10	1.00		0.05	20.15	1.01		100.8%	

Notes:

1. Testing performed on -2 mm fraction from dry-sieving of crushings (nominal -5 mm).

2. ca. 20 mL of high-purity-deionised-water (HPDW) added to all samples (including HCl-solution 'blanks') initially.

3. HCl solution added manually via volumetric glass pipette (A Class).

4. HCl and NaOH solutions certified reagents from Merck (viz. Titripur® reagents in hermetically-sealed Titripac® casks).

5. Sample weight, and volume and strength of HCl added, based on corresponding CO3-C value(s).

6. During acid-digestion temperature of waterbath is 80 +/- 5 oC, and digestion performed for 1.0 hr with beakers swirled by hand

1-2 times during this reaction period. Digestion performed using 250 mL tall-form beakers covered with watchglasses.

7. After completion of acid-digestion step, the test-slurries are boiled for *ca*. 1 min to expel any dissolved CO2(aq) which is important for the attainment of a stable pH7 end-point in the subsequent back-titration with NaOH solution.

8. Following cooling to room-T, **digest-slurry-final-pH** is measured. HPDW is then added to bring test-slurry volume to *ca*. **125 mL** for titration with NaOH solution.

9. Titration with NaOH performed manually using 50 mL glass burette with slurry stirred using magnetic stirrer-bar. Fast titration with stopcock fully open until slurry-pH rises to approximate range 4.0-4.5 when titration stops for H2O2 addition.

10. Three drops of **30 % H2O2 (v/v)** [adjusted to pH 4.5] added to slurry to oxidise **soluble-Fe(II)** forms ('latent-acidity') and precipitation of Fe(III)/Al-oxyhydroxides, etc. <u>Minimum slurry-pH</u> attained following H2O2 addition recorded.

11. Following completion of H2O2 addition, titration with NaOH continues to a **pH7** end-point. Titration with NaOH undertaken so that slurry-pH at end-point is within range 6.9-7.1 (i.e. pH 7.0 +/- 0.1) for *ca*. 30 seconds. [Related pH-end-point stability criteria for manual titration (cf. autotititration) option applies in ASTM E1915-13, and AS-4969.12-09].

12. ANC Standard is pulped mixture of quartz and AR CaCO3 (CO3-C = 0.27 %; ANC = 22 kg H2SO4/tonne).

13. Samples with 'magnetite' noted were characterised by a deposit clinging to magnetic-stirrer bar retrieved after completion of titration with NaOH solution.

The main variations to the AMIRA (2002) method are the use of -2 mm fraction (cf. pulp, -75 µm nominal), and initial 'applied HCl loading', as governed by CO3-C value.

Dr GD Campbell 4th June 2019

ACID-NEUTRALISATION-CAPACITY (ANC) TESTWORK: BASED ON AMIRA (2002) WITH VARIATIONS TO CONSTRAIN DISSOLUTION OF NON-CARBONATE-MINERALS UNRELATED TO CIRCUM-NEUTRAL BUFFERING SAVE FOR VANISHINGLY-SMALL RATES OF PYRITE OXIDATION

SAMPLE		I	ICI	milli	Digest-	Na	aOH	milli	pН	Vigour of	BULK-]
		Conc.	Pipette	moles	Slurry-	Conc.	Titre	moles	after	'Fizzing' from	ANC	
ID	WT		Volume	H+	Final-		Volume	OH-	H2O2	HCl Addition	(kg H2SO4/	
	(g)	(M)	(mL)	Added	рН	(M)	(mL)	Added	Added	('in-the-cold')	tonne)	
ARD_023	10.01	0.10	10	1.00	1.6	0.05	12.00	0.600	> 4.0		2	
ARD_009	9.97	0.10	10	1.00	1.7	0.05	15.55	0.778	> 4.0		1	magnetite
ARD_018	10.01	0.10	10	1.00	2.0	0.05	12.00	0.600	> 4.0		2	magnetite
ARD_012	6.99	0.10	10	1.00	1.6	0.05	15.25	0.763	> 4.0		2	magnetite
ARD_005	6.01	0.10	10	1.00	1.5	0.05	16.50	0.825	> 4.0		1	
ARD_005 d	6.00	0.10	10	1.00	1.5	0.05	16.50	0.825	> 4.0		1	
ARD_015	6.01	0.10	10	1.00	1.8	0.05	8.55	0.428	> 4.0		5	magnetite
ARD_001	5.99	0.10	10	1.00	1.6	0.05	16.60	0.830	> 4.0		1	
ARD_006	4.98	0.10	10	1.00	1.6	0.05	18.20	0.910	> 4.0		1	
ARD_002	4.99	0.10	15	1.50	1.5	0.05	27.55	1.378	> 4.0		1	
ARD_004	6.01	0.10	20	2.00	2.1	0.05	11.60	0.580	> 4.0	weak	12	
ARD_004 d	5.99	0.10	20	2.00	2.1	0.05	11.80	0.590	> 4.0		12	
ARD_016	2.59	0.50	20	10.00	1.5	0.10	13.35	1.335	> 4.0	moderate-to-strong	164	magnetite
ARD_016 d	2.60	0.50	20	10.00	1.5	0.10	11.70	1.170	>4.0		167	magnetite
ANC Std	5.00	0.10	25	2.50	2.2	0.05	7.50	0.375	> 4.0		21	
ANC Std d	5.00	0.10	25	2.50	2.2	0.05	7.65	0.383	> 4.0		21	
0.1 M-HCl	-	0.10	10	1.00		0.05	20.10	1.01			100.5%]
0.1 M-HCl (d)	-	0.10	10	1.00		0.05	20.15	1.01			100.8%	

Notes:

1. Testing performed on fine-crushings (-2 mm fraction).

'Fizz' testing (where undertaken) employed 2-3 M-HCl determined on pulps.

2. ca. 20 mL of high-purity-deionised-water (HPDW) added to all samples (including HCl-solution 'blanks') initially.

3. HCl solution added manually via volumetric glass pipette (A Class).

4. HCl and NaOH solutions certified reagents from Merck (viz. Titripur® reagents in hermetically-sealed Titripac® casks).

5. Sample weight, and volume and strength of HCl added, based on corresponding CO3-C value(s).

6. During acid-digestion temperature of waterbath is 80 +/- 5 oC, and digestion performed for 1.0 hr with beakers swirled by hand

1-2 times during this reaction period. Digestion performed using 250 mL tall-form beakers covered with watchglasses.

7. After completion of acid-digestion step, the test-slurries are boiled for *ca*. 1 min to expel any dissolved CO2(aq) which is important for the attainment of a stable pH7 end-point in the subsequent back-titration with NaOH solution.

8. Following cooling to room-T, **digest-slurry-final-pH** is measured. HPDW is then added to bring test-slurry volume to *ca*. **125 mL** for titration with NaOH solution.

9. Titration with NaOH performed manually using 50 mL glass burette with slurry stirred using magnetic stirrer-bar. Fast titration with stopcock fully open until slurry-pH rises to approximate range 4.0-4.5 when titration stops for H2O2 addition.

10. Three drops of 30 % H2O2 (v/v) [adjusted to pH 4.5] added to slurry to oxidise soluble-Fe(II) forms ('latent-acidity') and

precipitation of Fe(III)/Al-oxyhydroxides, etc. Minimum slurry-pH attained following H2O2 addition recorded.

11. Following completion of H2O2 addition, titration with NaOH continues to a **pH7** end-point. Titration with NaOH undertaken

so that slurry-pH at end-point is within range 6.9-7.1 (i.e. pH 7.0 +/- 0.1) for *ca*. 30 seconds. [Related pH-end-point stability criteria for manual titration (cf. autotititration) option applies in ASTM E1915-13, and AS-4969.12-09].

12. ANC Standard is pulped mixture of quartz and AR CaCO3 (CO3-C = 0.27 %; ANC = 22 kg H2SO4/tonne).

13. Samples with 'magnetite' noted were characterised by a deposit clinging to magnetic-stirrer bar retrieved after completion of titration with NaOH solution.

The main variations to the AMIRA (2002) method are the use of -2 mm fraction (cf. pulp, -75 µm nominal), and initial 'applied HCl loading', as governed by CO3-C value.

Dr GD Campbell 6th June 2019

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Graeme Campbell	Manager	Marjana Siljanoska
Client	Graeme Campbell & Associates Pty Ltd	Laboratory	SGS Perth Environmental
Address	PO Box 247 Bridgetown WA 6255	Address	28 Reid Rd Perth Airport WA 6105
Telephone	0897 612 829	Telephone	(08) 9373 3500
Facsimile	0897 612 830	Facsimile	(08) 9373 3556
Email	gca@wn.com.au	Email	au.environmental.perth@sgs.com
Project	GCA-Job-No. 1901/1	SGS Reference	PE134287 R0
Order Number	GCA-Job-No. 1901/1	Date Received	15 Apr 2019
Samples	12	Date Reported	06 May 2019

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(898/20210).

Metals subcontracted to SGS Perth Minerals, 28 Reid Rd Perth Airport WA, NATA Accreditation Number 1936,WM192208

SIGNATORIES

SGS Australia Pty Ltd ABN 44 000 964 278 28 Reid RdPerth AirPO Box 32Welshpo

PE134287 R0

	Sampl Sam Sam	e Number ple Matrix ple Name	PE134287.001 PULP ARD_001	PE134287.002 PULP ARD_002
Parameter	Units	LOR		
Metals in soil by Four Acid digest, ICPMS Method: II	MS40Q Teste	d: 29/4/201	19	
Silver, Ag*	ppm	0.1	0.4	0.3
Arsenic, As*	ppm	1	2	2
Barium, Ba*	ppm	1	9	54
Bismuth, Bi*	ppm	0.1	1.5	0.7
Cadmium, Cd*	ppm	0.1	<0.1	<0.1
Cobalt, Co*	ppm	0.1	54	27
Molybdenum, Mo*	ppm	0.1	2.1	6.6
Lead, Pb*	ppm	1	16	9
Antimony, Sb*	ppm	0.1	0.1	<0.1
Tin, Sn*	ppm	0.3	0.8	0.6
Strontium, Sr*	ppm	0.1	1.9	6.1
Thorium, Th*	ppm	0.05	3.6	1.9
Thallium, TI*	ppm	0.2	<0.2	<0.2
Uranium, U*	ppm	0.05	1.0	0.61

ICPAES after Four Acid Digest Digest Method: ICP40Q Tested: 29/4/2019

Aluminium, Al*	ppm	100	80000	110000
Calcium, Ca*	ppm	40	100	210
Chromium, Cr*	ppm	10	680	620
Copper, Cu*	ppm	5	960	480
Iron, Fe*	ppm	100	340000	220000
Potassium, K*	ppm	100	170	1100
Magnesium, Mg*	ppm	20	1300	880
Manganese, Mn*	ppm	5	600	100
Sodium, Na*	ppm	50	1400	1400
Nickel, Ni*	ppm	5	320	280
Phosphorus, P*	ppm	20	100	50
Sulphur, S*	ppm	20	1400	1100
Titanium, Ti*	ppm	10	14000	4600
Vanadium, V*	ppm	1	750	370
Zinc, Zn*	ppm	5	68	97

Silicon, Si*	%	0.42	76000	172000
Boron, B*	ppm	20	<20	35

PE134287 R0

	Sampl Sam Sam	e Number ple Matrix ple Name	PE134287.003 PULP ARD_004	PE134287.004 PULP ARD_005
Parameter	Units	LOR		
Metals in soil by Four Acid digest, ICPMS Method: II	MS40Q Teste	d: 29/4/20 [,]	19	
Silver, Ag*	ppm	0.1	0.2	<0.1
Arsenic, As*	ppm	1	4	<1
Barium, Ba*	ppm	1	54	51
Bismuth, Bi*	ppm	0.1	1.7	6.2
Cadmium, Cd*	ppm	0.1	<0.1	<0.1
Cobalt, Co*	ppm	0.1	46	12
Molybdenum, Mo*	ppm	0.1	7.1	2.9
Lead, Pb*	ppm	1	22	9
Antimony, Sb*	ppm	0.1	0.2	0.2
Tin, Sn*	ppm	0.3	0.9	1.2
Strontium, Sr*	ppm	0.1	39	5.3
Thorium, Th*	ppm	0.05	3.9	1.8
Thallium, TI*	ppm	0.2	<0.2	0.2
Uranium, U*	ppm	0.05	0.76	0.33

ICPAES after Four Acid Digest Digest Method: ICP40Q Tested: 29/4/2019

Aluminium, Al*	ppm	100	120000	150000
Calcium, Ca*	ppm	40	3800	190
Chromium, Cr*	ppm	10	80	75
Copper, Cu*	ppm	5	290	100
Iron, Fe*	ppm	100	170000	87000
Potassium, K*	ppm	100	1600	2100
Magnesium, Mg*	ppm	20	1900	860
Manganese, Mn*	ppm	5	110	160
Sodium, Na*	ppm	50	2000	2000
Nickel, Ni*	ppm	5	93	71
Phosphorus, P*	ppm	20	<20	35
Sulphur, S*	ppm	20	430	580
Titanium, Ti*	ppm	10	13000	24000
Vanadium, V*	ppm	1	970	800
Zinc, Zn*	ppm	5	15	18

Silicon, Si*	%	0.42	17300	21500
Boron, B*	ppm	20	75	50

PE134287 R0

	Sample Number Sample Matrix Sample Name		PE134287.005 PULP ARD_006	PE134287.006 PULP ARD_011
Parameter	Units	LOR		
Metals in soil by Four Acid digest, ICPMS Method: II	MS40Q Teste	d: 29/4/201	19	
Silver, Ag*	ppm	0.1	<0.1	1.4
Arsenic, As*	ppm	1	1	<1
Barium, Ba*	ppm	1	34	48
Bismuth, Bi*	ppm	0.1	4.8	3.1
Cadmium, Cd*	ppm	0.1	<0.1	0.7
Cobalt, Co*	ppm	0.1	29	180
Molybdenum, Mo*	ppm	0.1	43	11
Lead, Pb*	ppm	1	10	11
Antimony, Sb*	ppm	0.1	0.2	<0.1
Tin, Sn*	ppm	0.3	1.1	1.9
Strontium, Sr*	ppm	0.1	5.0	47
Thorium, Th*	ppm	0.05	1.4	1.5
Thallium, TI*	ppm	0.2	<0.2	0.8
Uranium, U*	ppm	0.05	0.59	0.31

ICPAES after Four Acid Digest Digest Method: ICP40Q Tested: 29/4/2019

Aluminium, Al*	ppm	100	130000	38000
Calcium, Ca*	ppm	40	250	45000
Chromium, Cr*	ppm	10	370	1900
Copper, Cu*	ppm	5	630	1900
Iron, Fe*	ppm	100	200000	150000
Potassium, K*	ppm	100	720	3400
Magnesium, Mg*	ppm	20	620	70000
Manganese, Mn*	ppm	5	160	2000
Sodium, Na*	ppm	50	1900	6700
Nickel, Ni*	ppm	5	250	2200
Phosphorus, P*	ppm	20	70	240
Sulphur, S*	ppm	20	1500	310
Titanium, Ti*	ppm	10	23000	11000
Vanadium, V*	ppm	1	740	300
Zinc, Zn*	ppm	5	63	130

Silicon, Si*	%	0.42	16200	21500
Boron, B*	ppm	20	40	<20

PE134287 R0

	Sample Number Sample Matrix Sample Name		PE134287.007 PULP ARD_013	PE134287.008 PULP ARD_016
Parameter	Units	LOR		
Metals in soil by Four Acid digest, ICPMS Method: II	MS40Q Teste	d: 29/4/20 [,]	19	
Silver, Ag*	ppm	0.1	0.3	<0.1
Arsenic, As*	ppm	1	<1	<1
Barium, Ba*	ppm	1	4	<1
Bismuth, Bi*	ppm	0.1	1.1	<0.1
Cadmium, Cd*	ppm	0.1	0.5	<0.1
Cobalt, Co*	ppm	0.1	390	<0.1
Molybdenum, Mo*	ppm	0.1	1.9	<0.1
Lead, Pb*	ppm	1	2	<1
Antimony, Sb*	ppm	0.1	<0.1	<0.1
Tin, Sn*	ppm	0.3	0.7	<0.3
Strontium, Sr*	ppm	0.1	7.7	<0.1
Thorium, Th*	ppm	0.05	0.68	<0.05
Thallium, TI*	ppm	0.2	<0.2	<0.2
Uranium, U*	ppm	0.05	0.09	<0.05

ICPAES after Four Acid Digest Digest Method: ICP40Q Tested: 29/4/2019

Aluminium, Al*	ppm	100	10000	11000
Calcium, Ca*	ppm	40	1100	50000
Chromium, Cr*	ppm	10	270	140
Copper, Cu*	ppm	5	1300	260
Iron, Fe*	ppm	100	270000	140000
Potassium, K*	ppm	100	1000	250
Magnesium, Mg*	ppm	20	27000	86000
Manganese, Mn*	ppm	5	3700	3200
Sodium, Na*	ppm	50	6500	980
Nickel, Ni*	ppm	5	2800	1000
Phosphorus, P*	ppm	20	140	190
Sulphur, S*	ppm	20	310	120
Titanium, Ti*	ppm	10	2900	2900
Vanadium, V*	ppm	1	86	88
Zinc, Zn*	ppm	5	330	110

Silicon, Si*	%	0.42	17900	21700
Boron, B*	ppm	20	<20	<20

PE134287 R0

	Sampl Sam Sam	e Number ple Matrix ple Name	PE134287.009 PULP ARD_019	PE134287.010 PULP ARD_022
Parameter	Units	LOR		
Metals in soil by Four Acid digest, ICPMS Method: I	MS40Q Teste	d: 29/4/201	9	
Silver, Ag*	ppm	0.1	0.7	0.2
Arsenic, As*	ppm	1	<1	1
Barium, Ba*	ppm	1	440	13
Bismuth, Bi*	ppm	0.1	0.4	0.5
Cadmium, Cd*	ppm	0.1	0.1	0.1
Cobalt, Co*	ppm	0.1	1400	54
Molybdenum, Mo*	ppm	0.1	3.2	1.3
Lead, Pb*	ppm	1	4	3
Antimony, Sb*	ppm	0.1	<0.1	0.1
Tin, Sn*	ppm	0.3	1.0	0.7
Strontium, Sr*	ppm	0.1	19	110
Thorium, Th*	ppm	0.05	0.42	0.29
Thallium, TI*	ppm	0.2	2.2	<0.2
Uranium, U*	ppm	0.05	0.13	0.07

ICPAES after Four Acid Digest Digest Method: ICP40Q Tested: 29/4/2019

Aluminium, Al*	ppm	100	78000	70000
Calcium, Ca*	ppm	40	1000	75000
Chromium, Cr*	ppm	10	700	200
Copper, Cu*	ppm	5	1000	93
Iron, Fe*	ppm	100	160000	79000
Potassium, K*	ppm	100	1500	1700
Magnesium, Mg*	ppm	20	7700	44000
Manganese, Mn*	ppm	5	8200	1200
Sodium, Na*	ppm	50	5500	16000
Nickel, Ni*	ppm	5	1700	170
Phosphorus, P*	ppm	20	100	220
Sulphur, S*	ppm	20	210	45
Titanium, Ti*	ppm	10	7100	4300
Vanadium, V*	ppm	1	300	250
Zinc, Zn*	ppm	5	220	77

Silicon, Si*	%	0.42	18700	26300
Boron, B*	ppm	20	<20	<20

PE134287 R0

	Sample Number Sample Matrix Sample Name			PE134287.012 PULP ARD_026
Parameter	Units	LOR		
Metals in soil by Four Acid digest, ICPMS Method: II	MS40Q Tested	d: 29/4/201	19	
Silver, Ag*	ppm	0.1	<0.1	0.2
Arsenic, As*	ppm	1	<1	<1
Barium, Ba*	ppm	1	56	58
Bismuth, Bi*	ppm	0.1	0.6	1.7
Cadmium, Cd*	ppm	0.1	0.2	0.2
Cobalt, Co*	ppm	0.1	83	54
Molybdenum, Mo*	ppm	0.1	0.8	3.3
Lead, Pb*	ppm	1	3	4
Antimony, Sb*	ppm	0.1	<0.1	<0.1
Tin, Sn*	ppm	0.3	0.7	0.8
Strontium, Sr*	ppm	0.1	370	85
Thorium, Th*	ppm	0.05	0.52	0.16
Thallium, TI*	ppm	0.2	<0.2	0.4
Uranium, U*	ppm	0.05	0.13	0.05

ICPAES after Four Acid Digest Digest Method: ICP40Q Tested: 29/4/2019

Aluminium, Al*	ppm	100	79000	85000
Calcium, Ca*	ppm	40	82000	87000
Chromium, Cr*	ppm	10	80	510
Copper, Cu*	ppm	5	58	130
Iron, Fe*	ppm	100	120000	82000
Potassium, K*	ppm	100	4700	8400
Magnesium, Mg*	ppm	20	43000	48000
Manganese, Mn*	ppm	5	1200	1400
Sodium, Na*	ppm	50	13000	13000
Nickel, Ni*	ppm	5	130	240
Phosphorus, P*	ppm	20	130	140
Sulphur, S*	ppm	20	120	160
Titanium, Ti*	ppm	10	22000	4600
Vanadium, V*	ppm	1	700	260
Zinc, Zn*	ppm	5	84	100

Silicon, Si*	%	0.42	22600	25200
Boron, B*	ppm	20	<20	<20

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : *the absolute difference of the two results divided by the average of the two results as a percentage*. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

No QC samples were reported for this job.

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
ICP40Q	Sample solutions (from Four Acid digest) are analysed by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) against matched standards.
ICP90Q	Sample solutions (from Alkali Fusion) are analysed by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) against matched standards.
IMS40Q	Sample solutions (from Four Acid Digest) are analysed by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) against matched standards.

FOOTNOTES _

IS	Insufficient sample for analysis.
LNR	Sample listed, but not received.
*	NATA accreditation does not cover the
	performance of this service.
**	Indicative data, theoretical holding time exceeded.

LOR Limit of Reporting

- ↑↓ Raised or Lowered Limit of Reporting
- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance
- The sample was not analysed for this analyte NVL Not Validated

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au.pv.sgsvr/en-gb/environment</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Graeme Campbell	Manager	Marjana Siljanoska
Client	Graeme Campbell & Associates Pty Ltd	Laboratory	SGS Perth Environmental
Address	PO Box 247 Bridgetown WA 6255	Address	28 Reid Rd Perth Airport WA 6105
Telephone	0897 612 829	Telephone	(08) 9373 3500
Facsimile	0897 612 830	Facsimile	(08) 9373 3556
Email	gca@wn.com.au	Email	au.environmental.perth@sgs.com
Project	GCA-Job-No. 1901/1	SGS Reference	PE134647 R1
Order Number	GCA-Job-No. 1901/1	Date Received	06 May 2019
Samples	14	Date Reported	20 May 2019

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(898/20210).

Samples ARD_025 and ARD_026 were filtered (0.45µm) prior to preservation / assaying. They were very difficult to filter and we could only obtain a few drops through the filter. Hence the samples were run in dilution and LOR raised as a result. Sample ARD_013 - metal LORs raised as dilution required due to high conductivity.

Metals: The over range results on ICPMS Method AN318 were reported using ICPOES method AN320.

SIGNATORIES

Hue Thanh Ly Metals Team Leader

Louisettope

Louise Hope Laboratory Technician

Ohmar David Metals Chemist

Environment, Health and Safety

28 Reid Rd I PO Box 32

Perth Airport WA 6105 Welshpool WA 6983 Australiat +61 8 9373 3500Australiaf +61 8 9373 3556

www.sgs.com.au

	Sampl	le Number	PE134647.001	PE134647.002
	Sam	iple Matrix		
	Gan		/((0_022	/((<u>D_020</u>
Parameter	Units	LOR		
pH in water Method: AN101 Tested: 6/5/2019				
pH**	pH Units	0.1	7.7	8.2
Conductivity and TDS by Calculation - Water Method	l: AN106 Tes	ted: 6/5/2	019	
Conductivity @ 25 C	μS/cm	2	260	470
Alkalinity Method: AN135 Tested: 6/5/2019 Bicarbonate Alkalinity as HCO3	mg/L	1	37	140
Carbonate Alkalinity as CO3	mg/L	1	<1	<1
Hydroxide Alkalinity as OH	mg/L	1	<1	<1
Total Alkalinity as CaCO3	mg/L	1	30	110
Acidity and Free CO2 Method: AN140 Tested: 9/5/	2019			
Acidity to pH 8.3	mg CaCO3/L	5	-	-
Chloride by Discrete Analyser in Water Method: AN2	74 Tested: 9)/5/2019		
Chloride, Cl	mg/L	1	48	88
Sulfate in water Method: AN275 Tested: 9/5/2019	1			
Sulfate, SO4	mg/L	1	16	56
Fluoride by Ion Selective Electrode in Water Method	: AN141 Test	ed: 8/5/2(019	
Fluoride by ISE	mg/L	0.1	0.7	1.3
Metals in Water (Dissolved) by ICPOES Method: AN	320 Tested:	8/5/2019		
Phosphorus, P	μg/L	50	130	<500↑
Silicon, Si	µg/L	20	9600	66000
Sulfur, S	µg/L	100	4600	8900
Cations in Water (Dissolved) by ICPOES Method: AN	N020/AN320	Tested: 8	/5/2019	
Calcium, Ca	μg/L	10	700	1100
Magnesium, Mg	µg/L	10	97	5500
Potassium, K	µg/L	50	990	980
Sodium, Na	µg/L	50	48000	100000

PE134647 R1

	Samp	le Number	PE134647.001	PE134647.002
	Sam	nple Matrix	Water	Water
	San	npie Name	ARD_022	ARD_025
Parameter	Units	LOR		
Trees Matala (Disserbusel) is Water by IODNO - Mathad				
Irace Metals (Dissolved) in water by ICPMS Method	AN318 lest	ed: 8/5/20	J19	
Aluminium, Al	µg/L	5	410	9000
Antimony, Sb	µg/L	1	<1	<10↑
Arsenic, As	µg/L	1	26	<10↑
Barium, Ba	µg/L	0.2	2.0	11
Bismuth, Bi	µg/L	1	<1	<10↑
Boron, B	µg/L	5	250	360
Cadmium, Cd	µg/L	0.1	<0.1	<1.0↑
Chromium, Cr	µg/L	1	1	100
Cobalt, Co	µg/L	1	<1	46
Copper, Cu	µg/L	1	12	290
Iron, Fe	µg/L	5	140	17000
Lead, Pb	µg/L	1	<1	<10↑
Manganese, Mn	µg/L	1	2	80
Molybdenum, Mo	µg/L	0.5	41	<5.0↑
Nickel, Ni	µg/L	1	2	210
Selenium, Se	µg/L	1	<1	<10↑
Silver, Ag	µg/L	1	<1	<10↑
Strontium, Sr	µg/L	1	5	18
Thallium, TI	µg/L	1	<1	<10↑
Thorium, Th	µg/L	1	<1	<10 ↑
Tin, Sn	µg/L	1	<1	<10↑
Titanium, Ti	µg/L	1	2	1900
Uranium, U	µg/L	1	1	<10↑
Vanadium, V	µg/L	1	130	440
Zinc, Zn	µg/L	5	<5	120

	Mercury ua/l 0.05 0.07 <0.50 t
--	---------------------------------------

	Samp San San	le Number nple Matrix nple Name	PE134647.003 Water ARD_026	PE134647.004 Water ARD_011
Parameter	Units	LOR		
pH in water Method: AN101 Tested: 8/5/2019				
pH**	pH Units	0.1	9.0	7.0
Conductivity and TDS by Calculation - Water Method	I: AN106 Tes	ited: 8/5/20	19	
Conductivity @ 25 C	µS/cm	2	590	1400
Alkalinity Method: AN135 Tested: 8/5/2019				
Bicarbonate Alkalinity as HCO3	mg/L	1	65	10
Carbonate Alkalinity as CO3	mg/L	1	8	<1
Total Alkalinity as CaCO3	mg/L	1	67	8
Acidity and Free CO2 Method: AN140 Tested: 9/5/	2019			
Acidity to pH 8.3	mg CaCO3/L	5	-	-
Chloride by Discrete Analyser in Water Method: AN2	74 Tested: 9	9/5/2019		
Chloride, Cl	mg/L	1	140	370
Sulfate in water Method: AN275 Tested: 9/5/2019		1 1 1		
Sulfate, SO4	mg/L	1	56	89
Fluoride by Ion Selective Electrode in Water Method	AN141 Test	ted: 8/5/201	9	
Fluoride by ISE	mg/L	0.1	1.5	0.6
Metals in Water (Dissolved) by ICPOES Method: AN	320 Tested:	8/5/2019		
Phosphorus, P	μg/L	50	<500↑	95
Silicon, Si	µg/L	20	81000	15000
Sulfur, S	µg/L	100	11000	28000
Cations in Water (Dissolved) by ICPOES Method: AN	1020/AN320	Tested: 8/5	/2019	
Calcium, Ca	μg/L	10	2200	130
Magnesium, Mg	µg/L	10	11000	1200
Potassium, K	µg/L	50	2200	4700
Sodium, Na	µg/L	50	130000	260000

PE134647 R1

	Samp	le Number	PE134647.003	PE134647.004
	San	nple Name	ARD 026	ARD 011
			_	_
Parameter	Units	LOR		
Trace Metals (Dissolved) in Water by ICPMS Method	: AN318 Test	ted: 8/5/20	19	
Aluminium, Al	µg/L	5	16000	15
Antimony, Sb	μg/L	1	<10↑	<1
Arsenic, As	µg/L	1	<10↑	2
Barium, Ba	µg/L	0.2	66	0.9
Bismuth, Bi	μg/L	1	<10↑	<1
Boron, B	μg/L	5	550	340
Cadmium, Cd	μg/L	0.1	<1.0↑	<0.1
Chromium, Cr	µg/L	1	1100	5
Cobalt, Co	µg/L	1	68	<1
Copper, Cu	μg/L	1	1300	8
Iron, Fe	µg/L	5	32000	40
Lead, Pb	µg/L	1	10	<1
Manganese, Mn	µg/L	1	400	5
Molybdenum, Mo	µg/L	0.5	40	17
Nickel, Ni	µg/L	1	590	2
Selenium, Se	µg/L	1	<10↑	4
Silver, Ag	µg/L	1	<10↑	<1
Strontium, Sr	µg/L	1	16	2
Thallium, TI	µg/L	1	<10↑	<1
Thorium, Th	µg/L	1	<10↑	<1
Tin, Sn	µg/L	1	<10↑	<1
Titanium, Ti	μg/L	1	1800	<1
Uranium, U	µg/L	1	<10↑	<1
Vanadium, V	µg/L	1	390	8
Zinc, Zn	µg/L	5	430	<5

	Mercury μg/L 0.05 <0.50↑ <0.05
--	--------------------------------

	Samp Sam San	le Number pple Matrix pple Name	PE134647.005 Water ARD_013	PE134647.006 Water ARD_016
Parameter	Units	LOR		
pH in water Method: AN101 Tested: 6/5/2019				
pH**	pH Units	0.1	7.1	8.8
Conductivity and TDS by Calculation - Water Method	I: AN106 Tes	ted: 6/5/20	19	
Conductivity @ 25 C	μS/cm	2	7000	820
Alkalinity Method: AN135 Tested: 6/5/2019				
Bicarbonate Alkalinity as HCO3	mg/L	1	10	120
Hydrovide Alkalinity as OH	mg/L	1	<1	<1
Total Alkalinity as CaCO3	mg/L	1	9	97
Acidity and Free CO2 Method: AN140 Tested: 9/5/	2019			
Acidity to pH 8.3	mg CaCO3/L	5	-	-
Chloride by Discrete Analyser in Water Method: AN2	74 Tested: §	9/5/2019		
Chloride, Cl	mg/L	1	2100	140
Sulfate in water Method: AN275 Tested: 9/5/2019				
Sulfate, SO4	mg/L	1	400	92
Fluoride by Ion Selective Electrode in Water Method	: AN141 Test	ed: 8/5/201	19	
Fluoride by ISE	mg/L	0.1	0.3	0.5
Metals in Water (Dissolved) by ICPOES Method: AN	320 Tested:	8/5/2019		
Phosphorus, P	µg/L	50	<50	<50
Silicon, Si	µg/L	20	11000	11000
Sulfur, S	µg/L	100	130000	29000
Cations in Water (Dissolved) by ICPOES Method: Al	N020/AN320	Tested: 8/5	5/2019	
Calcium, Ca	µg/L	10	1800	2800
Magnesium, Mg	µg/L	10	54000	6700
Potassium, K	µg/L	50	25000	5200
Sodium, Na	μg/L	50	1300000	140000

PE134647 R1

	Samp San	le Number	PE134647.005 Water	PE134647.006 Water
	San	nple Name	ARD_013	ARD_016
Parameter	Units	LOR		
Trace Metals (Dissolved) in Water by ICPMS Method	: AN318 Test	ted: 8/5/20	19	
Aluminium, Al	µg/L	5	<10↑	17
Antimony, Sb	µg/L	1	<2↑	<1
Arsenic, As	µg/L	1	<2↑	<1
Barium, Ba	µg/L	0.2	1.4	0.8
Bismuth, Bi	µg/L	1	<2↑	<1
Boron, B	µg/L	5	580	150
Cadmium, Cd	µg/L	0.1	<0.2↑	<0.1
Chromium, Cr	µg/L	1	4	<1
Cobalt, Co	µg/L	1	<2↑	<1
Copper, Cu	µg/L	1	8	4
Iron, Fe	µg/L	5	<10↑	<5
Lead, Pb	µg/L	1	<2↑	<1
Manganese, Mn	µg/L	1	9	2
Molybdenum, Mo	µg/L	0.5	<1.0↑	38
Nickel, Ni	µg/L	1	20	1
Selenium, Se	µg/L	1	<2↑	<1
Silver, Ag	µg/L	1	<2↑	<1
Strontium, Sr	µg/L	1	30	10
Thallium, TI	µg/L	1	<2↑	<1
Thorium, Th	µg/L	1	<2↑	<1
Tin, Sn	µg/L	1	<2↑	<1
Titanium, Ti	µg/L	1	<2↑	<1
Uranium, U	µg/L	1	<2↑	<1
Vanadium, V	µg/L	1	<2↑	2
Zinc, Zn	µg/L	5	16	9

|--|

	Samp San San	le Number pple Matrix pple Name	PE134647.007 Water ARD_001	PE134647.008 Water ARD_002
Parameter	Units	LOR		
pH in water Method: AN101 Tested: 6/5/2019				
pH**	pH Units	0.1	5.4	4.3
Conductivity and TDS by Calculation - Water Method	l: AN106 Tes	ted: 6/5/20	19	
Conductivity @ 25 C	µS/cm	2	2300	1800
Alkalinity Method: AN135 Tested: 6/5/2019	~~//			
Carbonate Alkalinity as CO3	mg/L	1	<1	<1
Hydroxide Alkalinity as QH	mg/L	1	<1	<1
Total Alkalinity as CaCO3	mg/L	1	1	<1
Acidity and Free CO2 Method: AN140 Tested: 9/5/	2019		I	,
Acidity to pH 8.3	mg CaCO3/L	5	-	14
Chloride by Discrete Analyser in Water Method: AN2	74 Tested: 9	9/5/2019		
Chloride, Cl	mg/L	1	690	490
Sulfate in water Method: AN275 Tested: 9/5/2019				
Sulfate, SO4	mg/L	1	100	100
Fluoride by Ion Selective Electrode in Water Method	AN141 Test	ed: 8/5/201	19	
Fluoride by ISE	mg/L	0.1	0.2	0.2
Metals in Water (Dissolved) by ICPOES Method: AN3	320 Tested:	8/5/2019		
Phosphorus, P	µg/L	50	<50	<50
Silicon, Si	µg/L	20	12000	20000
Sulfur, S	µg/L	100	31000	33000
Cations in Water (Dissolved) by ICPOES Method: AN	1020/AN320	Tested: 8/	5/2019	
Calcium, Ca	µg/L	10	3300	3700
Magnesium, Mg	µg/L	10	28000	20000
Potassium, K	µg/L	50	12000	4700
Sodium, Na	µg/L	50	370000	290000

PE134647 R1

	Samp	le Number	PE134647.007	PE134647.008
	San	nple Matrix		Water
	Sall		ARD_001	ARD_002
Parameter	Units	LOR		
Trace Motals (Dissolved) in Water by ICPMS Method		od: 8/5/20	10	
	ANDIO TEST	.eu. 0/5/20		1
Aluminium, Al	µg/L	5	210	860
Antimony, Sb	µg/L	1	<1	<1
Arsenic, As	µg/L	1	<1	<1
Barium, Ba	µg/L	0.2	36	88
Bismuth, Bi	µg/L	1	<1	<1
Boron, B	µg/L	5	450	670
Cadmium, Cd	µg/L	0.1	<0.1	<0.1
Chromium, Cr	µg/L	1	<1	20
Cobalt, Co	µg/L	1	15	49
Copper, Cu	µg/L	1	28	100
Iron, Fe	µg/L	5	30	60
Lead, Pb	µg/L	1	<1	<1
Manganese, Mn	µg/L	1	94	240
Molybdenum, Mo	µg/L	0.5	<0.5	<0.5
Nickel, Ni	µg/L	1	58	84
Selenium, Se	µg/L	1	<1	<1
Silver, Ag	µg/L	1	<1	<1
Strontium, Sr	µg/L	1	53	110
Thallium, TI	µg/L	1	<1	<1
Thorium, Th	µg/L	1	<1	<1
Tin, Sn	µg/L	1	<1	<1
Titanium, Ti	µg/L	1	<1	<1
Uranium, U	µg/L	1	<1	<1
Vanadium, V	µg/L	1	<1	<1
Zinc, Zn	µg/L	5	210	180

|--|

	Samp Sam Sam	le Number pple Matrix pple Name	PE134647.009 Water ARD_004	PE134647.010 Water ARD_005
Parameter	Units	LOR _		
pH in water Method: AN101 Tested: 6/5/2019				
pH**	pH Units	0.1	8.3	5.0
Conductivity and TDS by Calculation - Water Method	d: AN106 Tes	ted: 6/5/20	19	
Conductivity @ 25 C	µS/cm	2	1800	2900
Alkalinity Method: AN135 Tested: 6/5/2019				
Bicarbonate Alkalinity as HCO3	mg/L	1	140	<1
Carbonate Alkalinity as CO3	mg/L	1	<1	<1
Hydroxide Alkalinity as OH	mg/L	1	<1	<1
Total Alkalinity as CaCO3	mg/L	1	110	<1
Acidity and Free CO2 Method: AN140 Tested: 9/5/	2019			
Acidity to pH 8.3	mg CaCO3/L	5	-	7
Chloride by Discrete Analyser in Water Method: AN2	74 Tested: 9	9/5/2019		
Chloride, Cl	mg/L	1	420	820
Sulfate in water Method: AN275 Tested: 9/5/2019				
Sulfate, SO4	mg/L	1	120	140
Fluoride by Ion Selective Electrode in Water Method	: AN141 Test	ed: 8/5/201	9	
Fluoride by ISE	mg/L	0.1	1.7	<0.1
Metals in Water (Dissolved) by ICPOES Method: AN	320 Tested:	8/5/2019		
Phosphorus, P	µg/L	50	<50	<50
Silicon, Si	µg/L	20	7400	20000
Sulfur, S	µg/L	100	39000	45000
Cations in Water (Dissolved) by ICPOES Method: Al	N020/AN320	Tested: 8/5	/2019	
Calcium, Ca	µg/L	10	9000	5900
Magnesium, Mg	µg/L	10	7500	27000
Potassium, K	µg/L	50	7000	8100
Sodium, Na	µg/L	50	320000	470000

PE134647 R1

	Samp	le Number	PE134647.009	PE134647.010
	Sam	ple Matrix		Water
	San	ipie marrie	AND_004	AND_000
Parameter	Units	LOR		
Trace Metals (Dissolved) in Water by ICPMS Method	: AN318 Test	ed: 8/5/2()19	
Aluminium, Al	µg/L	5	20	180
Antimony, Sb	µg/L	1	<1	<1
Arsenic, As	µg/L	1	<1	<1
Barium, Ba	µg/L	0.2	25	44
Bismuth, Bi	µg/L	1	<1	<1
Boron, B	µg/L	5	1500	640
Cadmium, Cd	µg/L	0.1	<0.1	<0.1
Chromium, Cr	µg/L	1	<1	<1
Cobalt, Co	µg/L	1	<1	37
Copper, Cu	µg/L	1	7	24
Iron, Fe	µg/L	5	13	10
Lead, Pb	µg/L	1	<1	<1
Manganese, Mn	µg/L	1	2	180
Molybdenum, Mo	µg/L	0.5	7.6	<0.5
Nickel, Ni	µg/L	1	<1	16
Selenium, Se	µg/L	1	2	<1
Silver, Ag	µg/L	1	<1	<1
Strontium, Sr	µg/L	1	150	140
Thallium, TI	µg/L	1	<1	<1
Thorium, Th	µg/L	1	<1	<1
Tin, Sn	µg/L	1	<1	<1
Titanium, Ti	µg/L	1	<1	<1
Uranium, U	µg/L	1	<1	<1
Vanadium, V	µg/L	1	15	<1
Zinc, Zn	µg/L	5	<5	23

	Mercury µg/L	0.05	<0.05	0.07
--	--------------	------	-------	------

	Samp San San	le Number nple Matrix nple Name	PE134647.011 Water ARD_006	PE134647.012 Water ARD_019
Parameter	Units	LOR		
pH in water Method: AN101 Tested: 6/5/2019				
рН**	pH Units	0.1	4.2	6.5
Conductivity and TDS by Calculation - Water Method	d: AN106 Tes	ted: 6/5/20 ⁻	19	
Conductivity @ 25 C	µS/cm	2	3600	4300
Alkalinity Method: AN135 Tested: 6/5/2019 Bicarbonate Alkalinity as HCO3 Carbonate Alkalinity as CO3 Hydroxide Alkalinity as OH	mg/L mg/L mg/L	1 1 1	<1 <1 <1	3 <1 <1
Total Alkalinity as CaCO3	mg/L	1	<1	3
Acidity and Free CO2 Method: AN140 Tested: 8/5/	/2019			
Acidity to pH 8.3	mg CaCO3/L	5	19	-
Chloride by Discrete Analyser in Water Method: AN2	?74 Tested: §	9/5/2019		
Chloride, Cl	mg/L	1	1100	1200
Sulfate in water Method: AN275 Tested: 9/5/2019		1		
Sulfate, SO4	mg/L	1	240	290
Fluoride by Ion Selective Electrode in Water Method	: AN141 Test	ed: 8/5/201	9	
Fluoride by ISE	mg/L	0.1	0.4	0.3
Metals in Water (Dissolved) by ICPOES Method: AN	320 Tested:	8/5/2019		
Phosphorus, P	µg/L	50	<50	<50
Silicon, Si	µg/L	20	20000	19000
Sulfur, S	µg/L	100	77000	91000
Cations in Water (Dissolved) by ICPOES Method: A	N020/AN320	Tested: 8/5	/2019	
Calcium, Ca	µg/L	10	18000	2200
Magnesium, Mg	µg/L	10	55000	19000
Potassium, K	µg/L	50	11000	19000
Sodium, Na	µg/L	50	570000	740000

PE134647 R1

	Samp San	ble Number	PE134647.011 Water	PE134647.012 Water
	Sar	nple Name	ARD_006	ARD_019
Parameter	Units	LOR		
Trace Metals (Dissolved) in Water by ICPMS Method	: AN318 Tes	ted: 8/5/20)19	
Aluminium, Al	µg/L	5	1600	<5
Antimony, Sb	µg/L	1	<1	<1
Arsenic, As	µg/L	1	<1	2
Barium, Ba	µg/L	0.2	41	2.2
Bismuth, Bi	µg/L	1	<1	<1
Boron, B	µg/L	5	1100	1100
Cadmium, Cd	µg/L	0.1	<0.1	<0.1
Chromium, Cr	µg/L	1	2	2
Cobalt, Co	µg/L	1	76	94
Copper, Cu	µg/L	1	100	18
Iron, Fe	µg/L	5	33	<5
Lead, Pb	μg/L	1	<1	<1
Manganese, Mn	µg/L	1	230	250
Molybdenum, Mo	μg/L	0.5	<0.5	<0.5
Nickel, Ni	µg/L	1	80	71
Selenium, Se	µg/L	1	<1	<1
Silver, Ag	μg/L	1	<1	<1
Strontium, Sr	μg/L	1	490	63
Thallium, TI	μg/L	1	<1	<1
Thorium, Th	µg/L	1	<1	<1
Tin, Sn	μg/L	1	<1	<1
Titanium, Ti	µg/L	1	<1	<1
Uranium, U	µg/L	1	<1	<1
Vanadium, V	μg/L	1	<1	<1
Zinc, Zn	µg/L	5	100	30

	Mercury	µg/L	0.05	<0.05	<0.05
--	---------	------	------	-------	-------

	Samp San San	le Number pple Matrix pple Name	PE134647.013 Water BLANK	PE134647.014 Water HPDW
Parameter	Units	LOR		
pH in water Method: AN101 Tested: 6/5/2019				
pH**	pH Units	0.1	5.7	5.6
Conductivity and TDS by Calculation - Water Metho	od: AN106 Tes	ted: 6/5/20	19	
Conductivity @ 25 C	μS/cm	2	<2	<2
Alkalinity Method: AN135 Tested: 6/5/2019				
Bicarbonate Alkalinity as HCO3	mg/L	1	2	2
Carbonate Alkalinity as CO3	mg/L	1	<1	<1
Hydroxide Alkalinity as OH	mg/L	1	<1	<1
Total Alkalinity as CaCO3	mg/L	1	2	2
Acidity and Free CO2 Method: AN140 Tested: 9/	5/2019			
Acidity to pH 8.3	mg CaCO3/L	5	-	-
Chloride by Discrete Analyser in Water Method: AN	1274 Tested: S	9/5/2019		
Chloride, Cl	mg/L	1	<1	<1
Sulfate in water Method: AN275 Tested: 9/5/2019	9			
Sulfate, SO4	mg/L	1	<1	<1
Fluoride by Ion Selective Electrode in Water Metho	od: AN141 Test	ed: 8/5/201	19	
Fluoride by ISE	mg/L	0.1	<0.1	<0.1
Metals in Water (Dissolved) by ICPOES Method: A	N320 Tested:	8/5/2019		
Phosphorus, P	μg/L	50	<50	<50
Silicon, Si	µg/L	20	23	31
Sulfur, S	μg/L	100	<100	<100
Cations in Water (Dissolved) by ICPOES Method:	AN020/AN320	Tested: 8/5	5/2019	
Calcium, Ca	µg/L	10	55	150
Magnesium, Mg	µg/L	10	12	<10
Potassium, K	µg/L	50	<50	<50
Sodium. Na	µg/L	50	67	<50

PE134647 R1

	Samp	le Number	PE134647.013	PE134647.014
	San	nple Matrix	BLANK	HPDW
Parameter	Units	LOR		
Trace Metals (Dissolved) in Water by ICPMS Method	: AN318 Test	ed: 8/5/20)19	
Aluminium, Al	µg/L	5	18	58
Antimony, Sb	µg/L	1	<1	<1
Arsenic, As	µg/L	1	<1	<1
Barium, Ba	µg/L	0.2	<0.2	0.4
Bismuth, Bi	µg/L	1	<1	<1
Boron, B	µg/L	5	110	93
Cadmium, Cd	µg/L	0.1	<0.1	<0.1
Chromium, Cr	µg/L	1	<1	<1
Cobalt, Co	µg/L	1	<1	<1
Copper, Cu	µg/L	1	<1	<1
Iron, Fe	µg/L	5	<5	<5
Lead, Pb	µg/L	1	<1	<1
Manganese, Mn	µg/L	1	<1	<1
Molybdenum, Mo	µg/L	0.5	<0.5	<0.5
Nickel, Ni	µg/L	1	<1	<1
Selenium, Se	µg/L	1	<1	<1
Silver, Ag	µg/L	1	<1	<1
Strontium, Sr	µg/L	1	<1	1
Thallium, Tl	µg/L	1	<1	<1
Thorium, Th	µg/L	1	<1	<1
Tin, Sn	µg/L	1	<1	<1
Titanium, Ti	µg/L	1	<1	<1
Uranium, U	µg/L	1	<1	<1
Vanadium, V	µg/L	1	<1	<1
Zinc, Zn	µg/L	5	8	6

Mercury µg/L 0.05 <0.05 <0.05

QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Acidity and Free CO2 Method: ME-(AU)-[ENV]AN140

Parameter	QC Units		Units LOR		DUP %RPD	
	Reference					
Acidity to pH 8.3	LB159250	mg CaCO3/L	5	<5	0%	

Alkalinity Method: ME-(AU)-[ENV]AN135

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Bicarbonate Alkalinity as HCO3	LB159161	mg/L	1	2		
	LB159413	mg/L	1	1		
Carbonate Alkalinity as CO3	LB159161	mg/L	1	<1		
	LB159413	mg/L	1	<1		
Hydroxide Alkalinity as OH	LB159161	mg/L	1	<1		
	LB159413	mg/L	1	<1		
Total Alkalinity as CaCO3	LB159161	mg/L	1	2	14%	98%
	LB159413	mg/L	1	1		100%

Cations in Water (Dissolved) by ICPOES Method: ME-(AU)-[ENV]AN020/AN320

Parameter	QC	Units	LOR	MB	DUP %RPD
	Reference				
Calcium, Ca	LB159191	µg/L	10	<10	52 - 194%
Magnesium, Mg	LB159191	µg/L	10	<10	0%
Potassium, K	LB159191	µg/L	50	<0	0 - 144%
Sodium, Na	LB159191	µg/L	50	<0	0%

Chloride by Discrete Analyser in Water Method: ME-(AU)-[ENV]AN274

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Chloride, Cl	LB159241	mg/L	1	<1	0%	109%	105%

Conductivity and TDS by Calculation - Water Method: ME-(AU)-[ENV]AN106

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Conductivity @ 25 C	LB159160	µS/cm	2	<2	0 - 1%	104%
	LB159412	µS/cm	2	<2		106%

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Fluoride by Ion Selective Electrode in Water Method: ME-(AU)-[ENV]AN141

						-	
Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Fluoride by ISE	LB159200	mg/L	0.1	<0.1	0 - 1%	97%	92%

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Mercury	LB159214	µg/L	0.05	<0.00 - <0.05	38 - 170%	106 - 108%	93 - 119%

Metals in Water (Dissolved) by ICPOES Method: ME-(AU)-[ENV]AN320

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Phosphorus, P	LB159190	µg/L	50	<50	0%	99%	97%
Silicon, Si	LB159190	µg/L	20	<20	1 - 199%	105%	130%
Sulfur, S	LB159190	µg/L	100	<100	0 - 75%	98%	110%

pH in water Method: ME-(AU)-[ENV]AN101

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
pH**	LB159160	pH Units	0.1	5.6	1 - 2%	100%
	LB159412	pH Units	0.1	5.7		101%

Sulfate in water Method: ME-(AU)-[ENV]AN275

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Sulfate, SO4	LB159241	mg/L	1	<1	0 - 1%	107%	97%

Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Aluminium, Al	LB159182	µg/L	5	<5	3%	97%	92%
Antimony, Sb	LB159182	µg/L	1	<1	0%	102%	101%
Arsenic, As	LB159182	µg/L	1	<1	0%	118%	114%
Barium, Ba	LB159182	µg/L	0.2	<1.0	0 - 73%	106%	108%
Bismuth, Bi	LB159182	µg/L	1	<1	0%	111%	98%
Boron, B	LB159182	µg/L	5	<5	0 - 12%	100%	101%
Cadmium, Cd	LB159182	µg/L	0.1	<0.1	0%	107%	106%
Chromium, Cr	LB159182	µg/L	1	<1	0%	104%	103%
Cobalt, Co	LB159182	µg/L	1	<1	0 - 5%	102%	100%
Copper, Cu	LB159182	µg/L	1	<1	0 - 5%	112%	107%
Iron, Fe	LB159182	µg/L	5	<5	5 - 59%	100%	92%
Lead, Pb	LB159182	µg/L	1	<1	0%	115%	113%
Manganese, Mn	LB159182	µg/L	1	<1	0 - 4%	100%	98%
Molybdenum, Mo	LB159182	µg/L	0.5	<1.0	0%	110%	106%
Nickel, Ni	LB159182	µg/L	1	<1	0 - 6%	114%	104%
Selenium, Se	LB159182	µg/L	1	<1	0%	113%	125%
Silver, Ag	LB159182	µg/L	1	<1	0%	95%	91%
Strontium, Sr	LB159182	µg/L	1	<1	0 - 3%	101%	93%
Thallium, TI	LB159182	µg/L	1	<1	0%	97%	96%
Thorium, Th	LB159182	µg/L	1	<1	0%	105%	106%
Tin, Sn	LB159182	µg/L	1	<1	0%	103%	102%
Titanium, Ti	LB159182	µg/L	1	<1	0%	109%	98%
Uranium, U	LB159182	µg/L	1	<1	0%	100%	97%
Vanadium, V	LB159182	µg/L	1	<1	0%	102%	98%
Zinc, Zn	LB159182	µg/L	5	<5	4 - 9%	116%	120%

METHOD SUMMARY

METHOD	
— METHOD —	METHODOLOGY SUMMARY
AN020/AN320 LL	Dissolved Cations Low LOR by ICP-OES: Method is as per routine ICP OES method reporting a variation to the method being lower limit of reporting (LOR) for selected cations as validated by the site. Referenced to APHA 3120B.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA 2510 B.
AN106	Salinity may be calculated in terms of NaCl from the sample conductivity. This assumes all soluble salts present, measured by the conductivity, are present as NaCl.
AN135	Alkalinity (and forms of) by Titration: The sample is titrated with standard acid to pH 8.3 (P titre) and pH 4.5 (T titre) and permanent and/or total alkalinity calculated. The results are expressed as equivalents of calcium carbonate or recalculated as bicarbonate, carbonate and hydroxide. Reference APHA 2320. Internal Reference AN135
AN140	Acidity by Titration: The water sample is titrated with sodium hydroxide to designated pH end point. In a sample containing only carbon dioxide, bicarbonates and carbonates, titration to pH 8.3 at 25°C corresponds to stoichiometric neutralisation of carbonic acid to bicarbonate. Method reference APHA 2310 B.
AN141	Determination of Fluoride by ISE: A fluoride ion selective electrode and reference electrode combination, in the presence of a pH/complexation buffer, is used to determine the fluoride concentration. The electrode millivolt response is measured logarithmically against fluoride concentration. Reference APHA F- C.
AN274	Chloride by Aquakem DA: Chloride reacts with mercuric thiocyanate forming a mercuric chloride complex. In the presence of ferric iron, highly coloured ferric thiocyanate is formed which is proportional to the chloride concentration. Reference APHA 4500Cl-
AN275	sulfate by Aquakem DA: sulfate is precipitated in an acidic medium with barium chloride. The resulting turbidity is measured photometrically at 405nm and compared with standard calibration solutions to determine the sulfate concentration in the sample. Reference APHA 4500-SO42 Internal reference AN275.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN320	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.

METHOD SUMMARY

METHOD Calculation METHODOLOGY SUMMARY

Free and Total Carbon Dioxide may be calculated using alkalinity forms only when the samples TDS is <500mg/L. If TDS is >500mg/L free or total carbon dioxide cannot be reported . APHA4500CO2 D.

FOOTNOTES _

IS	Insufficient sample for analysis.
LNR	Sample listed, but not received.

- NATA accreditation does not cover the performance of this service.
- Indicative data, theoretical holding time exceeded.
- LOR Limit of Reporting î↓
- Raised or Lowered Limit of Reporting QFH
- QC result is above the upper tolerance QFL QC result is below the lower tolerance
 - The sample was not analysed for this analyte
- NVI Not Validated

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- 37 MBq is equivalent to 1 mCi b.

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sgs.com.au.pv.sgsvr/en-gb/environment.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.

- CLIENT DETAILS		LABORATORY DETAI	- LABORATORY DETAILS		
Contact	Graeme Campbell	Manager	Marjana Siljanoska		
Client	Graeme Campbell & Associates Pty Ltd	Laboratory	SGS Perth Environmental		
Address	PO Box 247 Bridgetown WA 6255	Address	28 Reid Rd Perth Airport WA 6105		
Telephone	0897 612 829	Telephone	(08) 9373 3500		
Facsimile	0897 612 830	Facsimile	(08) 9373 3556		
Email	gca@wn.com.au	Email	au.environmental.perth@sgs.com		
Project	GCA-Job-No. 1901/1	SGS Reference	PE134647A R0		
Order Number	GCA-Job-No. 1901/1	Date Received	18 May 2019		
Samples	11	Date Reported	24 May 2019		

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(898/20210).

Unable to analyse for Reactive Silica and Cr6+ for sample ARD_022 as no sample left from previous analysis.

SIGNATORIES _

Maryka-a

Mary Ann Ola-A Inorganics Team Leader

	Sampl Sam Sam	PE134647A.004 Water ARD_011	
Parameter	Units	LOR	
Reactive Silica by Aquakem Discrete Analyser Meth	od: AN270 Te	sted: 23/5/	/2019
Reactive Silica, Si	mg/L	0.05	16
Hexavalent Chromium in water by Discrete Analyser	Method: AN283	3 Tested	I: 24/5/2019
Hexavalent Chromium, Cr6+	mg/L	0.001	0.004

	Sampl Sam Sarr	le Number Iple Matrix Iple Name	PE134647A.005 Water ARD_013	PE134647A.006 Water ARD_016
Parameter	Units	LOR		
Reactive Silica by Aquakem Discrete Analyser Metho	od: AN270 Te	ested: 23/5/	2019	
Reactive Silica, Si	mg/L	0.05	11	12
Hexavalent Chromium in water by Discrete Analyser	Method: AN28	3 Tested	: 24/5/2019	

Hexavalent Chromium, Cr6+	mg/L	0.001	0.002	-

PE134647A R0

	Sample Number Sample Matrix Sample Name		PE134647A.007 Water ARD_001	PE134647A.008 Water ARD_002
Parameter	Units	LOR		
Reactive Silica by Aquakem Discrete Analyser Metho	od: AN270 To	ested: 23/5/	2019	
Reactive Silica, Si	mg/L	0.05	13	20
Hexavalent Chromium in water by Discrete Analyser	Method: AN28	3 Tested	: 24/5/2019	

Hexavalent Chromium, Cr6+	mg/L	0.001	-	<0.001

	Sample Number Sample Matrix Sample Name		PE134647A.009 Water ARD_004	PE134647A.010 Water ARD_005
Parameter	Units	LOR		
Reactive Silica by Aquakem Discrete Analyser Metho	od: AN270 To	ested: 23/5/	2019	
Reactive Silica, Si	mg/L	0.05	7.7	20
Hexavalent Chromium in water by Discrete Analyser	Method: AN28	3 Tested	: 24/5/2019	

Hexavalent Chromium, Cr6+	mg/L	0.001	-	-

	Sampl Sam Sam	e Number ple Matrix ple Name	PE134647A.011 Water ARD_006	PE134647A.012 Water ARD_019
Parameter	Units	LOR		
Reactive Silica by Aquakem Discrete Analyser Metho	od: AN270 Te	sted: 23/5	/2019	
Reactive Silica, Si	mg/L	0.05	19	19
Hexavalent Chromium in water by Discrete Analyser	Method: AN28	3 Testec	I: 24/5/2019	

Hexavalent Chromium, Cr6+	mg/L	0.001	<0.001	0.001

PE134647A R0

	Sample Number Sample Matrix Sample Name		PE134647A.013 Water BLANK	PE134647A.014 Water HPDW
Parameter	Units	LOR		
Reactive Silica by Aquakem Discrete Analyser Meth	od: AN270 Te	sted: 24/5	/2019	
Reactive Silica, Si	mg/L	0.05	-	-
Hexavalent Chromium in water by Discrete Analyser	Method: AN28	3 Tested	J: 24/5/2019	

Hexavalent Chromium, Cr6+	mg/L	0.001	<0.001	<0.001

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : *the absolute difference of the two results divided by the average of the two results as a percentage*. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Hexavalent Chromium in water by Discrete Analyser Method: ME-(AU)-[ENV]AN283

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Hexavalent Chromium, Cr6+	LB159840	mg/L	0.001	<0.001	0 - 11%	NA	NA

Reactive Silica by Aquakem Discrete Analyser Method: ME-(AU)-[ENV]AN270

Parameter	QC	Units	LOR	DUP %RPD	LCS	MS
	Reference				%Recovery	%Recovery
Reactive Silica, Si	LB159807	mg/L	0.05	0 - 1%	100 - 101%	94%

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN270	Reactive forms of silicon in acid solution below pH 2 react with ammonium molybdate ions to form a yellow silicomolybdate which is then reduced with ascorbic acid to produce a blue silicomolybdate complex. Oxalic acid is added to destroy any molybdophosphoric acid. Colourimetric determination by Aquakem Discrete Analyser.
AN283	Hexavalent Chromium via Discrete Analyser: Soluble hexavalent chromium forms a red/violet colour with diphenylcarbazide in acidic solution. This procedure is very sensitive and nearly specific for Cr6+. If total chromium is also measured the trivalent form of chromium Cr3+ can be calculated from the difference (Total Cr - Cr6+). Reference APHA3500CrB.

FOOTNOTES _

IS	Insufficient sample for analysis.
LNR	Sample listed, but not received.
*	NATA accreditation does not cover the

- performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- LOR Limit of Reporting
- ↑↓ Raised or Lowered Limit of Reporting
- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance - The sample was not analysed for this analyte
- NVL Not Validated
 - L Not validated

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

- Note that in terms of units of radioactivity:
 - a. 1 Bq is equivalent to 27 pCi
 - b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au.pv.sgsvr/en-gb/environment</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Graeme Campbell	Manager	Marjana Siljanoska
Client	Graeme Campbell & Associates Pty Ltd	Laboratory	SGS Perth Environmental
Address	PO Box 247 Bridgetown WA 6255	Address	28 Reid Rd Perth Airport WA 6105
Telephone	0897 612 829	Telephone	(08) 9373 3500
Facsimile	0897 612 830	Facsimile	(08) 9373 3556
Email	gca@wn.com.au	Email	au.environmental.perth@sgs.com
Project	GCA Job No.1901/1	SGS Reference	PE135111 R1
Order Number	GCA Job No. 1901/1	Date Received	22 May 2019
Samples	2	Date Reported	07 Jun 2019

COMMENTS _

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(898/20210).

Metals: The over range results on ICPMS Method AN318 were reported using ICPOES method AN320.

This report cancels and supersedes the report No.PE135111 R0 dated 4/6/2019 issued by SGS Environment, Health and Safety due to the addition of Hexavalent Chromium result.

SIGNATORIES

Hue Thanh Ly Metals Team Leader

Ohmar David Metals Chemist

Louisettope

Louise Hope Laboratory Technician

Maryka-a

Mary Ann Ola-A Inorganics Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

28 Reid Rd Pe PO Box 32 We

Perth Airport WA 6105 Welshpool WA 6983 Australiat +61 8 9373 3500Australiaf +61 8 9373 3556

www.sgs.com.au

PE135111 R1

	Samp San Sa	le Number nple Matrix mple Date	PE135111.001 Water 21 May 2019	PE135111.002 Water 21 May 2019
	San	nple Name	ARD_025	ARD_026
Parameter	Units	LOR		
pH in water Method: AN101 Tested: 22/5/2019				
pH**	pH Units	-	7.6	7.6
Conductivity and TDS by Calculation - Water Method	1: AN106 Tes	sted: 22/5/2	019	
Conductivity @ 25 C	μS/cm	2	280	580
Alkalinity Method: AN135 Tested: 22/5/2019				
Total Alkalinity as CaCO3	mg/L	1	31	33
Carbonate Alkalinity as CO3	mg/L	1	<1	<1
Bicarbonate Alkalinity as HCO3	mg/L	1	38	40
Fluoride by Ion Selective Electrode in Water Method	: AN141 Test	ted: 24/5/20	19	
Fluoride by ISE	mg/L	0.1	0.8	1.5
Chloride by Discrete Analyser in Water Method: AN2	74 Tested: 4	4/6/2019		
Chloride, Cl	mg/L	1	56	140
Sulfate in water Method: AN275 Tested: 4/6/2019				
Sulfate, SO4	mg/L	1	20	38
Reactive Silica by Aquakem Discrete Analyser Metho	od: AN270 Te	ested: 23/5/	2019	
Reactive Silica, Si	mg/L	0.05	8.8	9.7
Reactive Silica, SiO₂	mg/L	0.1	19	21
Metals in Water (Dissolved) by ICPOES Method: AN	320 Tested: 2	23/5/2019		
Phosphorus, P	µg/L	50	150	<50
Silicon, Si	µg/L	20	11000	13000
Sulfur, S	µg/L	100	5600	11000
Cations in Water (Dissolved) by ICPOES Method: Al	N020/AN320	Tested: 28/	5/2019	
Calcium, Ca	μg/L	10	230	220
Magnesium, Mg	µg/L	10	590	480
Potassium, K	µg/L	50	340	680
Sodium, Na	µg/L	50	51000	110000
Trace Metals (Dissolved) in Water by ICPMS Method	: AN318 Test	ed: 23/5/20	19	
Aluminium, Al	µg/L	5	690	900

µg/L

µg/L

1

1

<1

7

Antimony, Sb

Arsenic, As

<1

16

	Sar S S	PE135111.001 Water 21 May 2019 ARD_025	PE135111.002 Water 21 May 2019 ARD_026	
Parameter	Units	LOR		
Trace Metals (Dissolved) in Water by ICPMS	Method: AN318 Te	ested: 23/5/2	019 (continued)	
Barium, Ba	µg/L	0.2	0.5	0.6
Bismuth, Bi	μg/L	1	<1	<1
Boron, B	μg/L	5	120	170
Cadmium, Cd	μg/L	0.1	<0.1	<0.1
Chromium, Cr	µg/L	1	1	13
Cobalt, Co	µg/L	1	<1	1
Copper, Cu	µg/L	1	8	18
Iron, Fe	µg/L	5	690	1700
Lead, Pb	µg/L	1	<1	<1
Manganese, Mn	µg/L	1	1	6
Molybdenum, Mo	µg/L	0.5	1.9	20
Nickel, Ni	µg/L	1	5	10
Selenium, Se	µg/L	1	<1	<1
Silver, Ag	µg/L	1	<1	<1
Strontium, Sr	µg/L	1	1	1
Thallium, TI	µg/L	1	<1	<1
Thorium, Th	µg/L	1	<1	<1
Tin, Sn	µg/L	1	<1	<1
Titanium, Ti	µg/L	1	11	21
Uranium, U	µg/L	1	<1	<1
Vanadium, V	µg/L	1	110	72
Zinc, Zn	μg/L	5	<5	<5

Mercury (dissolved) in Water Method: AN311(Perth)/AN312 Tested: 23/5/2019

Mercury	μg/L	0.05	<0.05	<0.05

Hexavalent Chromium in water by Discrete Analyser Method: AN283 Tested: 6/6/2019

Hexavalent Chromium, Cr6+	mg/L	0.001	<0.001	<0.001

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Alkalinity Method: ME-(AU)-[ENV]AN135

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Total Alkalinity as CaCO3	LB159822	mg/L	1	1	1 - 5%	110 - 111%
Carbonate Alkalinity as CO3	LB159822	mg/L	1	<1		
Bicarbonate Alkalinity as HCO3	LB159822	mg/L	1	1		

Cations in Water (Dissolved) by ICPOES Method: ME-(AU)-[ENV]AN020/AN320

Parameter	QC	Units	LOR	MB	DUP %RPD
	Reference				
Calcium, Ca	LB159947	µg/L	10	<10	0 - 1%
Magnesium, Mg	LB159947	µg/L	10	<10	0%
Potassium, K	LB159947	µg/L	50	<50	0%
Sodium, Na	LB159947	µg/L	50	<50	0%

Chloride by Discrete Analyser in Water Method: ME-(AU)-[ENV]AN274

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Chloride, Cl	LB159961	mg/L	1	<1	0 - 6%	108 - 109%	87 - 103%

Conductivity and TDS by Calculation - Water Method: ME-(AU)-[ENV]AN106

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Conductivity @ 25 C	LB159940	µS/cm	2	<2	0%	102%

Fluoride by Ion Selective Electrode in Water Method: ME-(AU)-[ENV]AN141

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Fluoride by ISE	LB159831	mg/L	0.1	<0.1	0%	101%	110%

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Hexavalent Chromium in water by Discrete Analyser Method: ME-(AU)-[ENV]AN283

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Hexavalent Chromium, Cr6+	LB160265	mg/L	0.001	<0.001	0 - 9%	NA	NA

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Mercury	LB159787	µg/L	0.05	<0.05	6 - 181%	102 - 110%	103 - 109%

Metals in Water (Dissolved) by ICPOES Method: ME-(AU)-[ENV]AN320

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Phosphorus, P	LB159766	μg/L	50	<50	0%	103%
Silicon, Si	LB159766	µg/L	20	<20	43%	107%
Sulfur, S	LB159766	μg/L	100	<100	160%	103%

pH in water Method: ME-(AU)-[ENV]AN101

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
рН**	LB159940	pH Units	-	5.7	0 - 1%	101%

Reactive Silica by Aquakem Discrete Analyser Method: ME-(AU)-[ENV]AN270

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Reactive Silica, Si	LB159807	mg/L	0.05		0 - 1%	100 - 101%	94%
Reactive Silica, SiO ₂	LB159807	mg/L	0.1	<0.10	0 - 1%	100 - 101%	94%

Sulfate in water Method: ME-(AU)-[ENV]AN275

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Sulfate, SO4	LB159961	mg/L	1	<1	1 - 4%	108 - 110%	100 - 102%

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : *the absolute difference of the two results divided by the average of the two results as a percentage*. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Aluminium, Al	LB159771	µg/L	5	<5	0%	89%	105%
Antimony, Sb	LB159771	µg/L	1	<1		86%	
Arsenic, As	LB159771	µg/L	1	<1	0%	100%	97%
Barium, Ba	LB159771	µg/L	0.2	<1.0		87%	
Bismuth, Bi	LB159771	µg/L	1	<1		104%	
Boron, B	LB159771	µg/L	5	<5	5%	111%	
Cadmium, Cd	LB159771	µg/L	0.1	<0.1	0%	107%	110%
Chromium, Cr	LB159771	µg/L	1	<1	7%	91%	
Cobalt, Co	LB159771	µg/L	1	<1		92%	
Copper, Cu	LB159771	µg/L	1	<1	0%	97%	96%
Iron, Fe	LB159771	µg/L	5	<5	0%	84%	95%
Lead, Pb	LB159771	µg/L	1	<1	0%	101%	108%
Manganese, Mn	LB159771	µg/L	1	<1		90%	95%
Molybdenum, Mo	LB159771	µg/L	0.5	<1.0		99%	
Nickel, Ni	LB159771	µg/L	1	<1	0%	95%	
Selenium, Se	LB159771	µg/L	1	<1		106%	
Silver, Ag	LB159771	µg/L	1	<1		97%	
Strontium, Sr	LB159771	µg/L	1	<1	3%	86%	
Thallium, TI	LB159771	µg/L	1	<1		100%	
Thorium, Th	LB159771	µg/L	1	<1		99%	
Tin, Sn	LB159771	µg/L	1	<1		99%	
Titanium, Ti	LB159771	µg/L	1	<1		82%	
Uranium, U	LB159771	µg/L	1	<1	4%	83%	
Vanadium, V	LB159771	µg/L	1	<1		89%	
Zinc, Zn	LB159771	µg/L	5	<5	0%	85%	

METHOD SUMMARY

METHOD	
— METHOD —	METHODOLOGY SUMMARY
AN020/AN320 LL	Dissolved Cations Low LOR by ICP-OES: Method is as per routine ICP OES method reporting a variation to the method being lower limit of reporting (LOR) for selected cations as validated by the site. Referenced to APHA 3120B.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA 2510 B.
AN106	Salinity may be calculated in terms of NaCl from the sample conductivity. This assumes all soluble salts present, measured by the conductivity, are present as NaCl.
AN135	Alkalinity (and forms of) by Titration: The sample is titrated with standard acid to pH 8.3 (P titre) and pH 4.5 (T titre) and permanent and/or total alkalinity calculated. The results are expressed as equivalents of calcium carbonate or recalculated as bicarbonate, carbonate and hydroxide. Reference APHA 2320. Internal Reference AN 135
AN141	Determination of Fluoride by ISE: A fluoride ion selective electrode and reference electrode combination, in the presence of a pH/complexation buffer, is used to determine the fluoride concentration. The electrode millivolt response is measured logarithmically against fluoride concentration. Reference APHA F- C.
AN270	Reactive forms of silicon in acid solution below pH 2 react with ammonium molybdate ions to form a yellow silicomolybdate which is then reduced with ascorbic acid to produce a blue silicomolybdate complex. Oxalic acid is added to destroy any molybdophosphoric acid. Colourimetric determination by Aquakem Discrete Analyser.
AN274	Chloride by Aquakem DA: Chloride reacts with mercuric thiocyanate forming a mercuric chloride complex. In the presence of ferric iron, highly coloured ferric thiocyanate is formed which is proportional to the chloride concentration. Reference APHA 4500CI-
AN275	sulfate by Aquakem DA: sulfate is precipitated in an acidic medium with barium chloride. The resulting turbidity is measured photometrically at 405nm and compared with standard calibration solutions to determine the sulfate concentration in the sample. Reference APHA 4500-SO42 Internal reference AN275.
AN283	Hexavalent Chromium via Discrete Analyser: Soluble hexavalent chromium forms a red/violet colour with diphenylcarbazide in acidic solution. This procedure is very sensitive and nearly specific for Cr6+. If total chromium is also measured the trivalent form of chromium Cr3+ can be calculated from the difference (Total Cr - Cr6+). Reference APHA3500CrB.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN320	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN320	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.
Calculation	Free and Total Carbon Dioxide may be calculated using alkalinity forms only when the samples TDS is <500mg/L. If TDS is >500mg/L free or total carbon dioxide cannot be reported. APHA4500CO2 D.

FOOTNOTES

- IS Insufficient sample for analysis. LNR Sample listed, but not received.
- NATA accreditation does not cover the
- performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- LOR Limit of Reporting
- Raised or Lowered Limit of Reporting î↓
- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance The sample was not analysed for this analyte
- NVI Not Validated

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

- Note that in terms of units of radioactivity:
 - a. 1 Bq is equivalent to 27 pCi
 - 37 MBq is equivalent to 1 mCi b.

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sqs.com.au.pv.sqsvr/en-ab/environment.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.

CLIENT DETAILS		LABORATORY DETA	ILS
Contact	Graeme Campbell	Manager	Marjana Siljanoska
Client	Graeme Campbell & Associates Pty Ltd	Laboratory	SGS Perth Environmental
Address	PO Box 247 Bridgetown WA 6255	Address	28 Reid Rd Perth Airport WA 6105
Telephone	0897 612 829	Telephone	(08) 9373 3500
Facsimile	0897 612 830	Facsimile	(08) 9373 3556
Email	gca@wn.com.au	Email	au.environmental.perth@sgs.com
Project	GCA Job No. 1901/1	SGS Reference	PE136601 R1
Order Number	GCA Job No. 1901/1	Date Received	24 Jul 2019
Samples	15	Date Reported	01 Aug 2019

COMMENTS .

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(898/20210).

Metals: The over range results on ICPMS Method AN318 were reported using ICPOES method AN320. Metals: Dissolved B & Zn : Spike recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).

SIGNATORIES

Hue Thanh Ly Metals Team Leader

Ohmar David Metals Chemist

Louisettope

Louise Hope Laboratory Technician

Sanaa Hussain Chemist

Maryla-a

Mary Ann Ola-A Inorganics Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

28 Reid Rd Perth A PO Box 32 Welshp

Perth Airport WA 6105 Welshpool WA 6983

Australia t +61 8 9373 3500 Australia f +61 8 9373 3556 www.sgs.com.au

PE136601 R1

	Samp Sam Sam	le Number ple Matrix ple Name	PE136601.001 Water ARD 001 2	PE136601.002 Water ARD 001 3				
Parameter	Units	LOR						
pH in water Method: AN101 Tested: 24/7/2019			-					
pH**	pH Units	0.1	5.7	5.6				
Conductivity and TDS by Calculation - Water Method: AN106 Tested: 24/7/2019								
Conductivity @ 25 C	μS/cm	2	1200	510				
Alkalinity Method: AN135 Tested: 24/7/2019								
Total Alkalinity as CaCO3	mg/L	1	1	<1				
Chloride by Discrete Analyser in Water Method: AN274 Tested: 30/7/2019								
Chloride, Cl	mg/L	1	200	66				
Sulfate in water Method: AN275 Tested: 30/7/2019								
Sulfate, SO4	mg/L	1	240	130				
Fluoride by Ion Selective Electrode in Water Method	: AN141 Test	ed: 25/7/2	019					
Fluoride by ISE	mg/L	0.1	<0.1	<0.1				
Acidity and Free CO2 Method: AN140 Tested: 25/7	/2019							
Acidity to pH 8.3	mg CaCO3/L	1	-	-				
Metals in Water (Dissolved) by ICPOES Method: AN320 Tested: 25/7/2019								
Phosphorus, P	µg/L	50	-	-				
Silicon, Si	µg/L	20	11000	9000				
Sulfur, S	μg/L	100	-	-				
Cations in Water (Dissolved) by ICPOES Method: AN020/AN320 Tested: 26/7/2019								
Calcium, Ca	µg/L	10	-	-				
Magnesium, Mg	µg/L	10	-	-				
Potassium, K	μg/L	50	-	-				

µg/L

50

_

Sodium, Na

_

PE136601 R1

	Sample Number		PE136601.001	PE136601.002
	Sample Matrix		ARD 001 2	ARD 001 3
Parameter	Units	LOR		
Trace Metals (Dissolved) in Water by ICPMS Method	AN318 Test	ed: 25/7/2	019	
Aluminium, Al	µg/L	5	19	13
Antimony, Sb	µg/L	1	-	-
Arsenic, As	µg/L	1	-	-
Barium, Ba	µg/L	0.2	-	-
Bismuth, Bi	µg/L	1	-	-
Boron, B	µg/L	5	860	560
Cadmium, Cd	µg/L	0.1	-	-
Chromium, Cr	µg/L	1	<1	<1
Cobalt, Co	µg/L	1	2	<1
Copper, Cu	µg/L	1	6	3
Iron, Fe	µg/L	5	<5	<5
Lead, Pb	µg/L	1	-	-
Manganese, Mn	µg/L	1	8	3
Molybdenum, Mo	µg/L	0.5	-	-
Nickel, Ni	µg/L	1	13	3
Selenium, Se	µg/L	1	-	-
Silver, Ag	µg/L	1	-	-
Strontium, Sr	µg/L	1	-	-
Thallium, TI	µg/L	1	-	-
Thorium, Th	µg/L	1	-	-
Tin, Sn	µg/L	1	-	-
Titanium, Ti	µg/L	1	-	-
Uranium, U	µg/L	1	-	-
Vanadium, V	µg/L	1	-	-
Zinc, Zn	µg/L	5	430	140

Mercury (dissolved) in Water Method: AN311(Perth)/AN312 Tested: 26/7/2019

Mercury	µg/L	0.05	-	-

PE136601 R1

	Sample Number Sample Matrix Sample Name		PE136601.003 Water ARD_001_4	PE136601.004 Water ARD_002_2					
Parameter	Units	LOR							
pH in water Method: AN101 Tested: 24/7/2019									
pH**	pH Units	0.1	5.4	4.7					
Conductivity and TDS by Calculation - Water Method: AN106 Tested: 24/7/2019									
Conductivity @ 25 C	µS/cm	2	350	850					
Alkalinity Method: AN135 Tested: 24/7/2019									
Total Alkalinity as CaCO3	mg/L	1	-	-					
Chloride by Discrete Analyser in Water Method: AN274 Tested: 30/7/2019									
Chloride, Cl	mg/L	1	56	110					
Sulfate in water Method: AN275 Tested: 30/7/2019									
Sulfate, SO4	mg/L	1	59	210					
Fluoride by Ion Selective Electrode in Water Method	: AN141 Test	ed: 25/7/2	019						
Fluoride by ISE	mg/L	0.1	<0.1	<0.1					
Acidity and Free CO2 Method: AN140 Tested: 25/7	/2019								
Acidity to pH 8.3	mg CaCO3/L	1	3	8					
Metals in Water (Dissolved) by ICPOES Method: AN320 Tested: 25/7/2019									
Phosphorus, P	µg/L	50	<50	-					
Silicon, Si	µg/L	20	8300	17000					
Sulfur, S	µg/L	100	22000	-					
Cations in Water (Dissolved) by ICPOES Method: AN020/AN320 Tested: 25/7/2019									
Calcium, Ca	µg/L	10	110	-					
Magnesium, Mg	µg/L	10	530	-					
Potassium, K	µg/L	50	2700	-					

µg/L

50

Sodium, Na

_

60000

PE136601 R1

	Sample Number		PE136601.003	PE136601.004
	San	nple Matrix	ARD 001 4	ARD 002 2
Parameter	Units	LOR		
Trace Metals (Dissolved) in Water by ICPMS Method:	AN318 Test	ted: 25/7/20	019	
Aluminium, Al	μg/L	5	11	100
Antimony, Sb	µg/L	1	<1	-
Arsenic, As	µg/L	1	<1	-
Barium, Ba	µg/L	0.2	2.9	-
Bismuth, Bi	µg/L	1	<1	-
Boron, B	µg/L	5	440	810
Cadmium, Cd	µg/L	0.1	<0.1	-
Chromium, Cr	µg/L	1	<1	29
Cobalt, Co	µg/L	1	<1	5
Copper, Cu	µg/L	1	2	36
Iron, Fe	µg/L	5	<5	51
Lead, Pb	µg/L	1	<1	-
Manganese, Mn	µg/L	1	2	23
Molybdenum, Mo	µg/L	0.5	<0.5	-
Nickel, Ni	µg/L	1	2	14
Selenium, Se	µg/L	1	<1	-
Silver, Ag	µg/L	1	<1	-
Strontium, Sr	µg/L	1	1	-
Thallium, Tl	µg/L	1	<1	-
Thorium, Th	µg/L	1	<1	-
Tin, Sn	µg/L	1	<1	-
Titanium, Ti	µg/L	1	<1	-
Uranium, U	µg/L	1	<1	-
Vanadium, V	µg/L	1	<1	-
Zinc, Zn	μg/L	5	120	93

Mercury (dissolved) in Water Method: AN311(Perth)/AN312 Tested: 25/7/2019

	Mercury	µg/L	0.05	<0.05	-
--	---------	------	------	-------	---

PE136601 R1

	Samp Sam Sam	le Number ople Matrix ople Name	PE136601.005 Water ARD_002_3	PE136601.006 Water ARD_002_4		
Parameter	Units	LOR				
pH in water Method: AN101 Tested: 24/7/2019						
pH**	pH Units	0.1	4.8	4.9		
Conductivity and TDS by Calculation - Water Method	I: AN106 Tes	ted: 24/7/2	2019			
Conductivity @ 25 C	μS/cm	2	380	220		
Alkalinity Method: AN135 Tested: 24/7/2019						
Total Alkalinity as CaCO3	mg/L	1	-	-		
Chloride by Discrete Analyser in Water Method: AN274 Tested: 30/7/2019						
Chloride, Cl	mg/L	1	41	23		
Sulfate in water Method: AN275 Tested: 30/7/2019						
Sulfate, SO4	mg/L	1	86	52		
Fluoride by Ion Selective Electrode in Water Method	: AN141 Test	ed: 25/7/2	019			
Fluoride by ISE	mg/L	0.1	<0.1	<0.1		
Acidity and Free CO2 Method: AN140 Tested: 25/7/2019						
Acidity to pH 8.3	mg CaCO3/L	1	5	4		
Metals in Water (Dissolved) by ICPOES Method: AN320 Tested: 25/7/2019						
Phosphorus, P	µg/L	50	-	<50		
Silicon, Si	µg/L	20	16000	13000		
Sulfur, S	µg/L	100	-	18000		
Cations in Water (Dissolved) by ICPOES Method: Al	N020/AN320	Tested: 26	5/7/2019			
Calcium, Ca	µg/L	10	-	140		
Magnesium, Mg	µg/L	10	-	510		
Potassium, K	µg/L	50	-	550		

µg/L

50

Sodium, Na

40000

_

PE136601 R1

	Sample Number Sample Matrix Sample Name		PE136601.005 Water ARD_002_3	PE136601.006 Water ARD_002_4
Parameter	Units	LOR		
Trace Metals (Dissolved) in Water by ICPMS Method	AN318 Test	ted: 25/7/2	019	
Aluminium, Al	µg/L	5	36	16
Antimony, Sb	µg/L	1	-	<1
Arsenic, As	µg/L	1	-	<1
Barium, Ba	µg/L	0.2	-	15
Bismuth, Bi	µg/L	1	-	<1
Boron, B	µg/L	5	500	350
Cadmium, Cd	µg/L	0.1	-	<0.1
Chromium, Cr	µg/L	1	14	7
Cobalt, Co	µg/L	1	2	1
Copper, Cu	µg/L	1	18	11
Iron, Fe	µg/L	5	35	16
Lead, Pb	µg/L	1	-	<1
Manganese, Mn	µg/L	1	9	7
Molybdenum, Mo	µg/L	0.5	-	<0.5
Nickel, Ni	µg/L	1	7	4
Selenium, Se	µg/L	1	-	<1
Silver, Ag	µg/L	1	-	<1
Strontium, Sr	µg/L	1	-	3
Thallium, TI	µg/L	1	-	<1
Thorium, Th	µg/L	1	-	<1
Tin, Sn	µg/L	1	-	<1
Titanium, Ti	µg/L	1	-	<1
Uranium, U	µg/L	1	-	<1
Vanadium, V	µg/L	1	-	<1
Zinc, Zn	µg/L	5	34	24

Mercury (dissolved) in Water Method: AN311(Perth)/AN312 Tested: 26/7/2019

Mercury	µg/L	0.05	_	<0.05

PE136601 R1

	Samp Sam Sam	le Number Iple Matrix Iple Name	PE136601.007 Water ARD_004_2	PE136601.008 Water ARD_004_3
Parameter	Units	LOR		
pH in water Method: AN101 Tested: 24/7/2019				
pH**	pH Units	0.1	8.8	8.6
Conductivity and TDS by Calculation - Water Method	d: AN106 Tes	ted: 24/7/2	2019	
Conductivity @ 25 C	µS/cm	2	1500	630
Alkalinity Method: AN135 Tested: 24/7/2019				
Total Alkalinity as CaCO3	mg/L	1	370	260
Chloride by Discrete Analyser in Water Method: AN2	74 Tested: 3	0/7/2019		
Chloride, Cl	mg/L	1	190	30
Sulfate in water Method: AN275 Tested: 30/7/2019				
Sulfate, SO4	mg/L	1	130	14
Fluoride by Ion Selective Electrode in Water Method	: AN141 Test	ed: 25/7/2	019	
Fluoride by ISE	mg/L	0.1	4.9	5.1
Acidity and Free CO2 Method: AN140 Tested: 25/7	/2019			
Acidity to pH 8.3	mg CaCO3/L	1	-	-
Metals in Water (Dissolved) by ICPOES Method: AN	320 Tested: 2	25/7/2019		
Phosphorus, P	µg/L	50	-	-
Silicon, Si	µg/L	20	9400	8300
Sulfur, S	µg/L	100	-	-
Cations in Water (Dissolved) by ICPOES Method: Al	N020/AN320	Tested: 20	6/7/2019	
Calcium, Ca	µg/L	10	-	-
Magnesium, Mg	µg/L	10	-	-
Potassium, K	µg/L	50	-	-

µg/L

50

_

Sodium, Na

_

PE136601 R1

	Sample Number		PE136601.007	PE136601.008
	San	nple Matrix	ARD 004 2	ARD 004 3
Parameter	Units	LOR		
Trace Metals (Dissolved) in Water by ICPMS Method	: AN318 Test	ed: 25/7/2	019	
Aluminium, Al	µg/L	5	13	14
Antimony, Sb	µg/L	1	-	-
Arsenic, As	µg/L	1	-	-
Barium, Ba	µg/L	0.2	-	-
Bismuth, Bi	µg/L	1	-	-
Boron, B	µg/L	5	<5	<5
Cadmium, Cd	µg/L	0.1	-	-
Chromium, Cr	µg/L	1	<1	<1
Cobalt, Co	µg/L	1	<1	<1
Copper, Cu	µg/L	1	3	2
Iron, Fe	µg/L	5	<5	<5
Lead, Pb	µg/L	1	-	-
Manganese, Mn	µg/L	1	<1	<1
Molybdenum, Mo	µg/L	0.5	-	-
Nickel, Ni	µg/L	1	8	2
Selenium, Se	µg/L	1	-	-
Silver, Ag	µg/L	1	-	-
Strontium, Sr	µg/L	1	-	-
Thallium, TI	µg/L	1	-	-
Thorium, Th	µg/L	1	-	-
Tin, Sn	µg/L	1	-	-
Titanium, Ti	µg/L	1	-	-
Uranium, U	µg/L	1	-	-
Vanadium, V	µg/L	1	-	-
Zinc, Zn	µg/L	5	<5	<5

Mercury (dissolved) in Water Method: AN311(Perth)/AN312 Tested: 26/7/2019

Mercury	-

PE136601 R1

	Sampl Sam Sam	e Number ple Matrix ple Name	PE136601.009 Water ARD_005_2	PE136601.010 Water ARD_005_3		
Parameter	Units	LOR				
pH in water Method: AN101 Tested: 24/7/2019						
pH**	pH Units	0.1	5.4	6.1		
Conductivity and TDS by Calculation - Water Method: AN106 Tested: 24/7/2019						
Conductivity @ 25 C	µS/cm	2	1200	390		
Alkalinity Method: AN135 Tested: 24/7/2019						
Total Alkalinity as CaCO3	mg/L	1	-	2		
Chloride by Discrete Analyser in Water Method: AN2	74 Tested: 3	0/7/2019		1		
Chloride, Cl	mg/L	1	190	19		
Sulfate in water Method: AN275 Tested: 30/7/2019						
Sulfate, SO4	mg/L	1	230	150		
Fluoride by Ion Selective Electrode in Water Method	: AN141 Test	ed: 25/7/2	019			
Fluoride by ISE	mg/L	0.1	<0.1	<0.1		
Acidity and Free CO2 Method: AN140 Tested: 25/7/2019						
Acidity to pH 8.3	mg CaCO3/L	1	5	-		
Metals in Water (Dissolved) by ICPOES Method: AN	320 Tested: 2	25/7/2019				
Phosphorus, P	µg/L	50	-	-		
Silicon, Si	µg/L	20	14000	16000		
Sulfur, S	µg/L	100	-	-		
Cations in Water (Dissolved) by ICPOES Method: Al	N020/AN320	Tested: 26	6/7/2019	1		
Calcium, Ca	µg/L	10	-	-		
Magnesium, Mg	µg/L	10	-	-		
Potassium, K	µg/L	50	-	-		

µg/L

50

_

Sodium, Na

_

PE136601 R1

	Sample Number Sample Matrix Sample Name		PE136601.009 Water ARD 005 2	PE136601.010 Water ARD 005 3
Parameter	Units	LOR		
Trace Metals (Dissolved) in Water by ICPMS Method	: AN318 Tes	ted: 25/7/2	019	
Aluminium, Al	µg/L	5	32	7
Antimony, Sb	µg/L	1	-	-
Arsenic, As	µg/L	1	-	-
Barium, Ba	µg/L	0.2	-	-
Bismuth, Bi	µg/L	1	-	-
Boron, B	µg/L	5	<5	<5
Cadmium, Cd	μg/L	0.1	-	-
Chromium, Cr	µg/L	1	1	<1
Cobalt, Co	µg/L	1	2	<1
Copper, Cu	µg/L	1	8	3
Iron, Fe	µg/L	5	<5	<5
Lead, Pb	µg/L	1	-	-
Manganese, Mn	µg/L	1	16	2
Molybdenum, Mo	µg/L	0.5	-	-
Nickel, Ni	µg/L	1	6	3
Selenium, Se	µg/L	1	-	-
Silver, Ag	µg/L	1	-	-
Strontium, Sr	µg/L	1	-	-
Thallium, Tl	µg/L	1	-	-
Thorium, Th	µg/L	1	-	-
Tin, Sn	µg/L	1	-	-
Titanium, Ti	µg/L	1	-	-
Uranium, U	µg/L	1	-	-
Vanadium, V	µg/L	1	-	-
Zinc, Zn	µg/L	5	69	12

Mercury (dissolved) in Water Method: AN311(Perth)/AN312 Tested: 26/7/2019

Mercury	-

PE136601 R1

	Sampl Sam Sam	e Number ple Matrix ple Name	PE136601.011 Water ARD_005_4	PE136601.012 Water ARD_006_2		
Parameter	Units	LOR				
pH in water Method: AN101 Tested: 24/7/2019						
pH**	pH Units	0.1	5.6	4.1		
Conductivity and TDS by Calculation - Water Method	d: AN106 Tes	ted: 24/7/2	2019			
Conductivity @ 25 C	µS/cm	2	270	1400		
Alkalinity Method: AN135 Tested: 24/7/2019						
Total Alkalinity as CaCO3	mg/L	1	<1	-		
Chloride by Discrete Analyser in Water Method: AN274 Tested: 30/7/2019						
Chloride, Cl	mg/L	1	10	260		
Sulfate in water Method: AN275 Tested: 30/7/2019						
Sulfate, SO4	mg/L	1	88	220		
Fluoride by Ion Selective Electrode in Water Method: AN141 Tested: 25/7/2019						
Fluoride by ISE	mg/L	0.1	<0.1	<0.1		
Acidity and Free CO2 Method: AN140 Tested: 25/7/2019						
Acidity to pH 8.3	mg CaCO3/L	1	-	12		
Metals in Water (Dissolved) by ICPOES Method: AN320 Tested: 25/7/2019						
Phosphorus, P	µg/L	50	<50	-		
Silicon, Si	µg/L	20	17000	16000		
Sulfur, S	µg/L	100	31000	-		
Cations in Water (Dissolved) by ICPOES Method: Al	N020/AN320	Tested: 2	5/7/2019	1		
Calcium, Ca	µg/L	10	73	-		
Magnesium, Mg	µg/L	10	150	-		
Potassium, K	µg/L	50	710	-		

µg/L

50

Sodium, Na

_

49000

PE136601 R1

	Samp Sar	ole Number nole Matrix	PE136601.011 Water	PE136601.012 Water
	Sar	nple Name	ARD_005_4	ARD_006_2
Parameter	Units	LOR		
Trace Metals (Dissolved) in Water by ICPMS Method	: AN318 Tes	ted: 25/7/2	019	
Aluminium, Al	μg/L	5	6	77
Antimony, Sb	μg/L	1	<1	-
Arsenic, As	µg/L	1	1	-
Barium, Ba	µg/L	0.2	1.9	-
Bismuth, Bi	μg/L	1	<1	-
Boron, B	µg/L	5	<5	<5
Cadmium, Cd	µg/L	0.1	<0.1	-
Chromium, Cr	µg/L	1	<1	2
Cobalt, Co	µg/L	1	<1	7
Copper, Cu	μg/L	1	3	25
Iron, Fe	μg/L	5	<5	22
Lead, Pb	μg/L	1	<1	-
Manganese, Mn	µg/L	1	2	28
Molybdenum, Mo	µg/L	0.5	<0.5	-
Nickel, Ni	μg/L	1	2	11
Selenium, Se	µg/L	1	<1	-
Silver, Ag	µg/L	1	<1	-
Strontium, Sr	µg/L	1	<1	-
Thallium, Tl	μg/L	1	<1	-
Thorium, Th	µg/L	1	<1	-
Tin, Sn	μg/L	1	<1	-
Titanium, Ti	μg/L	1	<1	-
Uranium, U	µg/L	1	<1	-
Vanadium, V	µg/L	1	<1	-
Zinc, Zn	μg/L	5	8	130

Mercury (dissolved) in Water Method: AN311(Perth)/AN312 Tested: 25/7/2019

Mercury	µg/L	0.05	<0.05	-
-			1	J

PE136601 R1

	Sample Number Sample Matrix Sample Name		PE136601.013 Water ARD_006_3	PE136601.014 Water ARD_006_4					
Parameter	Units	LOR							
pH in water Method: AN101 Tested: 24/7/2019									
pH**	pH Units	0.1	4.2	4.2					
Conductivity and TDS by Calculation - Water Method: AN106 Tested: 24/7/2019									
Conductivity @ 25 C	µS/cm	2	450	310					
Alkalinity Method: AN135 Tested: 24/7/2019									
Total Alkalinity as CaCO3	mg/L	1	-	-					
Chloride by Discrete Analyser in Water Method: AN274 Tested: 30/7/2019									
Chloride, Cl	mg/L	1	40	23					
Sulfate in water Method: AN275 Tested: 30/7/2019									
Sulfate, SO4	mg/L	1	140	84					
Fluoride by Ion Selective Electrode in Water Method	: AN141 Test	ed: 25/7/2	019						
Fluoride by ISE	mg/L	0.1	<0.1	<0.1					
Acidity and Free CO2 Method: AN140 Tested: 25/7	/2019								
Acidity to pH 8.3	mg CaCO3/L	1	7	6					
Metals in Water (Dissolved) by ICPOES Method: AN320 Tested: 25/7/2019									
Phosphorus, P	µg/L	50	-	<50					
Silicon, Si	µg/L	20	16000	15000					
Sulfur, S	µg/L	100	-	28000					
Cations in Water (Dissolved) by ICPOES Method: Al	N020/AN320	Tested: 26	5/7/2019						
Calcium, Ca	µg/L	10	-	770					
Magnesium, Mg	µg/L	10	-	2000					
Potassium, K	µg/L	50	-	2400					

µg/L

50

Sodium, Na

48000

_

PE136601 R1

	Samp	e Number	PE136601.013 Water	PE136601.014 Water
	San	ple Name	ARD_006_3	ARD_006_4
Parameter	Units	LOR		
Trace Metals (Dissolved) in Water by ICPMS Method:	AN318 Test	ed: 25/7/2	019	
Aluminium, Al	µg/L	5	16	21
Antimony, Sb	µg/L	1	-	<1
Arsenic, As	µg/L	1	-	<1
Barium, Ba	µg/L	0.2	-	26
Bismuth, Bi	µg/L	1	-	<1
Boron, B	µg/L	5	<5	<5
Cadmium, Cd	µg/L	0.1	-	<0.1
Chromium, Cr	µg/L	1	<1	<1
Cobalt, Co	µg/L	1	2	4
Copper, Cu	µg/L	1	11	11
Iron, Fe	µg/L	5	11	9
Lead, Pb	µg/L	1	-	<1
Manganese, Mn	µg/L	1	9	12
Molybdenum, Mo	µg/L	0.5	-	<0.5
Nickel, Ni	µg/L	1	4	6
Selenium, Se	µg/L	1	-	<1
Silver, Ag	µg/L	1	-	<1
Strontium, Sr	µg/L	1	-	16
Thallium, TI	µg/L	1	-	<1
Thorium, Th	µg/L	1	-	<1
Tin, Sn	µg/L	1	-	<1
Titanium, Ti	µg/L	1	-	<1
Uranium, U	µg/L	1	-	<1
Vanadium, V	µg/L	1	-	<1
Zinc, Zn	µg/L	5	35	47

Mercury (dissolved) in Water Method: AN311(Perth)/AN312 Tested: 26/7/2019

Mercury	μg/L	0.05	-	<0.05
			1	

	Sampl Sam Sam	e Number ple Matrix ple Name	PE136601.015 Water HPDW					
Parameter	Units	LOR						
pH in water Method: AN101 Tested: 24/7/2019								
pH**	pH Units	0.1	5.5					
Conductivity and TDS by Calculation - Water Method	1: AN106 Tes	ted: 24/7/2	2019					
Conductivity @ 25 C	µS/cm	2	<2					
Alkalinity Method: AN135 Tested: 24/7/2019								
Total Alkalinity as CaCO3	mg/L	1	<1					
Chloride by Discrete Analyser in Water Method: AN274 Tested: 30/7/2019								
Chloride, Cl	mg/L	1	<1					
Sulfate in water Method: AN275 Tested: 30/7/2019								
Sulfate, SO4	mg/L	1	<1					
Fluoride by Ion Selective Electrode in Water Method	: AN141 Test	ed: 25/7/2	019					
Fluoride by ISE	mg/L	0.1	<0.1					
Acidity and Free CO2 Method: AN140 Tested: 25/7	/2019							
Acidity to pH 8.3	mg CaCO3/L	1	-					
Metals in Water (Dissolved) by ICPOES Method: AN320 Tested: 25/7/2019								
Phosphorus, P	µg/L	50	<50					
Silicon, Si	µg/L	20	<20					
Sulfur, S	µg/L	100	<100					
Cations in Water (Dissolved) by ICPOES Method: Al	N020/AN320	Tested: 25	5/7/2019					
Calcium, Ca	µg/L	10	<10					
Magnesium, Mg	µg/L	10	<10					

µg/L

µg/L

50

50

<50

<50

Potassium, K

Sodium, Na

	Samp Sarr Sarr	le Number pple Matrix pple Name	PE136601.015 Water HPDW
Parameter	Units	LOR	
Trace Metals (Dissolved) in Water by ICPMS Method	: AN318 Test	ed: 25/7/2	019
Aluminium, Al	µg/L	5	<5
Antimony, Sb	µg/L	1	<1
Arsenic, As	µg/L	1	<1
Barium, Ba	µg/L	0.2	0.2
Bismuth, Bi	µg/L	1	<1
Boron, B	µg/L	5	210
Cadmium, Cd	µg/L	0.1	<0.1
Chromium, Cr	µg/L	1	<1
Cobalt, Co	µg/L	1	<1
Copper, Cu	µg/L	1	<1
Iron, Fe	µg/L	5	<5
Lead, Pb	µg/L	1	<1
Manganese, Mn	µg/L	1	<1
Molybdenum, Mo	µg/L	0.5	<0.5
Nickel, Ni	µg/L	1	<1
Selenium, Se	µg/L	1	<1
Silver, Ag	µg/L	1	<1
Strontium, Sr	µg/L	1	<1
Thallium, Tl	µg/L	1	<1
Thorium, Th	µg/L	1	<1
Tin, Sn	µg/L	1	<1
Titanium, Ti	µg/L	1	<1
Uranium, U	µg/L	1	<1
Vanadium, V	µg/L	1	<1
Zinc, Zn	µg/L	5	<5

Mercury (dissolved) in Water Method: AN311(Perth)/AN312 Tested: 25/7/2019

Mercury	μg/L	0.05	<0.05

QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Acidity and Free CO2 Method: ME-(AU)-[ENV]AN140

Parameter	QC Reference	Units	LOR	MB	DUP %RPD
Acidity to pH 8.3	LB162137	mg CaCO3/L	1	<1	1 - 22%

Alkalinity Method: ME-(AU)-[ENV]AN135

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Total Alkalinity as CaCO3	LB162174	mg/L	1	<1	2%	98%

Cations in Water (Dissolved) by ICPOES Method: ME-(AU)-[ENV]AN020/AN320

Parameter	QC	Units	LOR	MB	DUP %RPD
	Reference				
Calcium, Ca	LB162037	µg/L	10	<0	0%
Magnesium, Mg	LB162037	µg/L	10	<10	0%
Potassium, K	LB162037	µg/L	50	<0	144%
Sodium, Na	LB162037	µg/L	50	<0	66%

Chloride by Discrete Analyser in Water Method: ME-(AU)-[ENV]AN274

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Chloride, Cl	LB162206	mg/L	1	<1	0 - 1%	96 - 97%	89 - 95%

Conductivity and TDS by Calculation - Water Method: ME-(AU)-[ENV]AN106

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Conductivity @ 25 C	LB162175	µS/cm	2	<2	0%	102 - 103%

Fluoride by Ion Selective Electrode in Water Method: ME-(AU)-[ENV]AN141

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Fluoride by ISE	LB162038	mg/L	0.1	<0.1	0 - 4%	98 - 103%	93 - 105%

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Mercury	LB162057	µg/L	0.05	<0.05	0 - 25%	99 - 104%	88 - 104%

Metals in Water (Dissolved) by ICPOES Method: ME-(AU)-[ENV]AN320

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Phosphorus, P	LB162035	µg/L	50	<50	0%	97%	
Silicon, Si	LB162035	µg/L	20	<20	0 - 2%	106%	118%
Sulfur, S	LB162035	µg/L	100	<100	0%	102%	

pH in water Method: ME-(AU)-[ENV]AN101

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
pH**	LB162175	pH Units	0.1	5.2 - 5.5	0 - 1%	100 - 101%

Sulfate in water Method: ME-(AU)-[ENV]AN275

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Sulfate, SO4	LB162206	mg/L	1	<1	0 - 1%	99 - 100%	87 - 94%

Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Aluminium, Al	LB162030	µg/L	5	<5	0 - 6%	83%	71%
Antimony, Sb	LB162030	µg/L	1	<1	0%	91%	
Arsenic, As	LB162030	µg/L	1	<1	0%	117%	
Barium, Ba	LB162030	µg/L	0.2	<0.2	0%	100%	
Bismuth, Bi	LB162030	µg/L	1	<1	0%	99%	
Boron, B	LB162030	µg/L	5	<5	0 - 3%	108%	847%
Cadmium, Cd	LB162030	µg/L	0.1	<0.1	0%	109%	
Chromium, Cr	LB162030	µg/L	1	<1	0%	100%	98%
Cobalt, Co	LB162030	µg/L	1	<1	0%	100%	99%
Copper, Cu	LB162030	µg/L	1	<1	0 - 4%	110%	100%
Iron, Fe	LB162030	µg/L	5	<5	0%	96%	79%
Lead, Pb	LB162030	µg/L	1	<1	0%	103%	
Manganese, Mn	LB162030	µg/L	1	<1	0 - 3%	96%	89%
Molybdenum, Mo	LB162030	µg/L	0.5	<0.5	0%	102%	
Nickel, Ni	LB162030	µg/L	1	<1	0 - 6%	106%	95%
Selenium, Se	LB162030	µg/L	1	<1	0%	110%	
Silver, Ag	LB162030	µg/L	1	<1	0%	93%	
Strontium, Sr	LB162030	µg/L	1	<1	0%	89%	
Thallium, TI	LB162030	µg/L	1	<1	0%	103%	
Thorium, Th	LB162030	µg/L	1	<1	0%	94%	
Tin, Sn	LB162030	µg/L	1	<1	0%	97%	
Titanium, Ti	LB162030	µg/L	1	<1	0%	100%	
Uranium, U	LB162030	µg/L	1	<1	0%	87%	
Vanadium, V	LB162030	µg/L	1	<1	0%	95%	
Zinc, Zn	LB162030	µg/L	5	<5	0 - 2%	117%	-27%

METHOD SUMMARY

NETHOD	
METHOD	METHODOLOGY SUMMARY
AN020/AN320 LL	Dissolved Cations Low LOR by ICP-OES: Method is as per routine ICP OES method reporting a variation to the method being lower limit of reporting (LOR) for selected cations as validated by the site. Referenced to APHA 3120B.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA 2510 B.
AN106	Salinity may be calculated in terms of NaCI from the sample conductivity. This assumes all soluble salts present, measured by the conductivity, are present as NaCI.
AN135	Alkalinity (and forms of) by Titration: The sample is titrated with standard acid to pH 8.3 (P titre) and pH 4.5 (T titre) and permanent and/or total alkalinity calculated. The results are expressed as equivalents of calcium carbonate or recalculated as bicarbonate, carbonate and hydroxide. Reference APHA 2320. Internal Reference AN135
AN140	Acidity by Titration: The water sample is titrated with sodium hydroxide to designated pH end point. In a sample containing only carbon dioxide, bicarbonates and carbonates, titration to pH 8.3 at 25°C corresponds to stoichiometric neutralisation of carbonic acid to bicarbonate. Method reference APHA 2310 B.
AN141	Determination of Fluoride by ISE: A fluoride ion selective electrode and reference electrode combination, in the presence of a pH/complexation buffer, is used to determine the fluoride concentration. The electrode millivolt response is measured logarithmically against fluoride concentration. Reference APHA F- C.
AN274	Chloride by Aquakem DA: Chloride reacts with mercuric thiocyanate forming a mercuric chloride complex. In the presence of ferric iron, highly coloured ferric thiocyanate is formed which is proportional to the chloride concentration. Reference APHA 4500CI-
AN275	sulfate by Aquakem DA: sulfate is precipitated in an acidic medium with barium chloride. The resulting turbidity is measured photometrically at 405nm and compared with standard calibration solutions to determine the sulfate concentration in the sample. Reference APHA 4500-SO42 Internal reference AN275.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN320	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.

METHOD SUMMARY

METHOD Calculation METHODOLOGY SUMMARY

Free and Total Carbon Dioxide may be calculated using alkalinity forms only when the samples TDS is <500mg/L. If TDS is >500mg/L free or total carbon dioxide cannot be reported . APHA4500CO2 D.

FOOTNOTES

IS	Insufficient sample for analysis.
LNR	Sample listed, but not received.

- NATA accreditation does not cover the performance of this service.
- Indicative data, theoretical holding time exceeded.
- LOR Limit of Reporting
- Raised or Lowered Limit of Reporting î↓
- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance The sample was not analysed for this analyte
- NVI Not Validated

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

- Note that in terms of units of radioactivity:
 - a. 1 Bq is equivalent to 27 pCi
 - 37 MBq is equivalent to 1 mCi b.

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sgs.com.au.pv.sgsvr/en-gb/environment.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Graeme Campbell	Manager	Marjana Siljanoska
Client	Graeme Campbell & Associates Pty Ltd	Laboratory	SGS Perth Environmental
Address	PO Box 247 Bridgetown WA 6255	Address	28 Reid Rd Perth Airport WA 6105
Telephone	0897 612 829	Telephone	(08) 9373 3500
Facsimile	0897 612 830	Facsimile	(08) 9373 3556
Email	gca@wn.com.au	Email	au.environmental.perth@sgs.com
Project	GCA Job No. 1901/1	SGS Reference	PE136601A R0
Order Number	GCA Job No. 1901/1	Date Received	01 Aug 2019
Samples	15	Date Reported	13 Aug 2019

COMMENTS .

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(898/20210).

SIGNATORIES _

Maryka-a

Mary Ann Ola-A Inorganics Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

28 Reid RdPerth AirpPO Box 32Welshpoor

Australia t +61 8 9373 3500 Australia f +61 8 9373 3556

www.sgs.com.au

PE136601A R0

	Sample Samp Samp	Number Ie Matrix Ie Name	PE136601A.001 Water ARD_001_2	PE136601A.002 Water ARD_001_3
Parameter	Units	LOR		
Hexavalent Chromium in water by Discrete Analyser	Method: AN283	Tested	: 8/8/2019	
Hexavalent Chromium, Cr6+	mg/L	0.001	-	-
Depative Cilian by Anyakam Disamte Analysen - Math		4-d- 40/0/	2040	

Reactive Silica, Si	mg/L	0.05	11	9.4

PE136601A R0

	Sample Samp Samp	e Number ble Matrix ble Name	PE136601A.003 Water ARD_001_4	PE136601A.004 Water ARD_002_2
Parameter	Units	LOR		
Hexavalent Chromium in water by Discrete Analyser	Method: AN283	B Testec	I: 8/8/2019	
Hexavalent Chromium in water by Discrete Analyser Hexavalent Chromium, Cr6+	Method: AN283	0.001	l: 8/8/2019 -	<0.001

Reactive Silica, Si	mg/L	0.05	8.1	17

PE136601A R0

	Sample Samp Samp	Number ble Matrix ble Name	PE136601A.005 Water ARD_002_3	PE136601A.006 Water ARD_002_4
Parameter	Units	LOR		
Hexavalent Chromium in water by Discrete Analyser	Method: AN283	Tested	: 7/8/2019	
Hexavalent Chromium, Cr6+	mg/L	0.001	<0.001	<0.001
Departies Oilling has American Dispute American Math			0040	

Reactive Silica, Si	mg/L	0.05	17	13

PE136601A R0

	Sample Samp Samp	Number le Matrix le Name	PE136601A.007 Water ARD_004_2	PE136601A.008 Water ARD_004_3
Parameter	Units	LOR		
Hexavalent Chromium in water by Discrete Analyser	Method: AN283	Tested	: 8/8/2019	
Hexavalent Chromium, Cr6+	mg/L	0.001	-	-

				1
Reactive Silica, Si	mg/L	0.05	9.6	8.6

PE136601A R0

	Sample Samp Samp	e Number ble Matrix ble Name	PE136601A.009 Water ARD_005_2	PE136601A.010 Water ARD_005_3
Parameter	Units	LOR		
Hexavalent Chromium in water by Discrete Analyser	Method: AN283	Tested:	7/8/2019	
Hexavalent Chromium, Cr6+	mg/L	0.001	<0.001	-

Reactive Silica, Si	mg/L	0.05	14	17

PE136601A R0

	Samplı Sam Sam	e Number ple Matrix ple Name	PE136601A.011 Water ARD_005_4	PE136601A.012 Water ARD_006_2
Parameter	Units	LOR		
Hexavalent Chromium in water by Discrete Analyser	Method: AN28	3 Tested	1: 8/8/2019	
Hexavalent Chromium, Cr6+	mg/L	0.001	-	<0.001
Reactive Silica by Aquakem Discrete Analyser Meth	od: AN270 Te	sted: 12/8	/2019	

Reactive Silica, Si	mg/L	0.05	18	16

PE136601A R0

	Sample Samp Samp	Number Ie Matrix Ie Name	PE136601A.013 Water ARD_006_3	PE136601A.014 Water ARD_006_4
Parameter	Units	LOR		
Hexavalent Chromium in water by Discrete Analyser	Method: AN283	Tested	: 8/8/2019	
Hexavalent Chromium, Cr6+	mg/L	0.001	-	-
			0040	

Reactive Silica, Si	mg/L	0.05	16	16

	Sample Samp Samp	Number le Matrix le Name	PE136601A.015 Water HPDW
Parameter	Units	LOR	
Hexavalent Chromium in water by Discrete Analyser	Method: AN283	Tested	: 8/8/2019
Hexavalent Chromium, Cr6+	mg/L	0.001	-
Reactive Silica by Aquakem Discrete Analyser Meth	od: AN270 Tes	ted: 12/8/	2019

Reactive Silica, Si	mg/L	0.05	<0.05

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : *the absolute difference of the two results divided by the average of the two results as a percentage*. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Hexavalent Chromium in water by Discrete Analyser Method: ME-(AU)-[ENV]AN283

					-		
Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Hexavalent Chromium, Cr6+	LB162474	mg/L	0.001	<0.001	0%	NA	NA

Reactive Silica by Aquakem Discrete Analyser Method: ME-(AU)-[ENV]AN270

Parameter	QC	Units	LOR	DUP %RPD	LCS	MS
	Reference				%Recovery	%Recovery
Reactive Silica, Si	LB162619	mg/L	0.05	0 - 1%	100%	86%

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN270	Reactive forms of silicon in acid solution below pH 2 react with ammonium molybdate ions to form a yellow silicomolybdate which is then reduced with ascorbic acid to produce a blue silicomolybdate complex. Oxalic acid is added to destroy any molybdophosphoric acid. Colourimetric determination by Aquakem Discrete Analyser.
AN283	Hexavalent Chromium via Discrete Analyser: Soluble hexavalent chromium forms a red/violet colour with diphenylcarbazide in acidic solution. This procedure is very sensitive and nearly specific for Cr6+. If total chromium is also measured the trivalent form of chromium Cr3+ can be calculated from the difference (Total Cr - Cr6+). Reference APHA3500CrB.

FOOTNOTES _

IS	Insufficient sample for analysis.
LNR	Sample listed, but not received.
*	NATA accreditation does not cover the

performance of this service.

** Indicative data, theoretical holding time exceeded.

- LOR Limit of Reporting
- ↑↓ Raised or Lowered Limit of Reporting
- QFH QC result is above the upper tolerance QFL QC result is below the lower tolerance
 - QC result is below the lower tolerance
 The sample was not analysed for this analyte
- NVL Not Validated

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au.pv.sgsvr/en-gb/environment</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Graeme Campbell	Manager	Marjana Siljanoska
Client	Graeme Campbell & Associates Pty Ltd	Laboratory	SGS Perth Environmental
Address	PO Box 247 Bridgetown WA 6255	Address	28 Reid Rd Perth Airport WA 6105
Telephone	0897 612 829	Telephone	(08) 9373 3500
Facsimile	0897 612 830	Facsimile	(08) 9373 3556
Email	gca@wn.com.au	Email	au.environmental.perth@sgs.com
Project	GCA Job No. 1901/1	SGS Reference	PE136602 R1
Order Number	GCA Job No. 1901/1	Date Received	24 Jul 2019
Samples	5	Date Reported	01 Aug 2019

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(898/20210).

Metals: LORs raised due to high conductivity.

Metals: Dissolved B: Spike recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).

Metals: The over range results on ICPMS Method AN318 were reported using ICPOES method AN320.

SIGNATORIES

Hue Thanh Ly Metals Team Leader

Ohmar David Metals Chemist

Louisettope

Louise Hope Laboratory Technician

Sanaa Hussain Chemist

Mary Ann Ola-A Inorganics Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

28 Reid RdPerth Airport WA 6105PO Box 32Welshpool WA 6983

A 6105 Australia 6983 Australia

ia t +61 8 9373 3500 ia f +61 8 9373 3556 www.sgs.com.au

PE136602 R1

	Samp Sarr Sarr	le Number pple Matrix pple Name	PE136602.001 Water ARD_001_1	PE136602.002 Water ARD_002_1
Parameter	Units	LOR		
pH in water Method: AN101 Tested: 24/7/2019				
pH**	pH Units	0.1	5.8	3.9
Conductivity and TDS by Calculation - Water Method	I: AN106 Tes	ted: 24/7/2	019	
Conductivity @ 25 C	μS/cm	2	16000	9800
Chloride by Discrete Analyser in Water Method: AN2	74 Tested: 3	0/7/2019		
Chloride, Cl	mg/L	1	4800	2900
Sulfate in water Method: AN275 Tested: 30/7/2019				
Sulfate, SO4	mg/L	1	710	580
Fluoride by Ion Selective Electrode in Water Method	AN141 Test	ed: 25/7/20)19	
Fluoride by ISE	mg/L	0.1	<0.1	1.2
Alkalinity Method: AN135 Tested: 24/7/2019		1 1		
Total Alkalinity as CaCO3	mg/L	1	2	-
Acidity and Free CO2 Method: AN140 Tested: 25/7	/2019			
Acidity to pH 8.3	mg CaCO3/L	1	-	150
Metals in Water (Dissolved) by ICPOES Method: AN	320 Tested: 2	25/7/2019		
Phosphorus, P	µg/L	50	<50	<50
Silicon, Si	µg/L	20	13000	19000
Sulfur, S	µg/L	100	260000	200000
Cations in Water (Dissolved) by ICPOES Method: AN	1020/AN320	Tested: 25	/7/2019	
Calcium, Ca	µg/L	10	25000	23000
Magnesium, Mg	μg/L	10	260000	140000
Potassium, K	µg/L	50	47000	14000
Sodium, Na	µg/L	50	2700000	1700000

PE136602 R1

	Samp	le Number	PE136602.001	PE136602.002
	Sar Sar	nple Matrix		
	Gai		////	///////////////////////////////////////
Parameter	Units	LOR		
Trace Metals (Dissolved) in Water by ICPMS Method	: AN318 Tes	ted: 25/7/2	019	
Aluminium, Al	µg/L	5	100	18000
Antimony, Sb	µg/L	1	<5↑	<5↑
Arsenic, As	µg/L	1	<5↑	6
Barium, Ba	µg/L	0.2	60	59
Bismuth, Bi	µg/L	1	<5↑	<5↑
Boron, B	µg/L	5	1500	2200
Cadmium, Cd	µg/L	0.1	<0.5↑	<0.5↑
Chromium, Cr	µg/L	1	<5↑	130
Cobalt, Co	µg/L	1	52	240
Copper, Cu	µg/L	1	38	660
Iron, Fe	µg/L	5	<25↑	310
Lead, Pb	µg/L	1	<5↑	16
Manganese, Mn	µg/L	1	300	1100
Molybdenum, Mo	µg/L	0.5	<2.5↑	<2.5↑
Nickel, Ni	µg/L	1	79	430
Selenium, Se	µg/L	1	<5↑	<5↑
Silver, Ag	µg/L	1	<5↑	<5↑
Strontium, Sr	µg/L	1	560	630
Thallium, TI	µg/L	1	<5↑	<5↑
Thorium, Th	µg/L	1	<5↑	<5↑
Tin, Sn	µg/L	1	<5↑	<5↑
Titanium, Ti	µg/L	1	<5↑	<5↑
Uranium, U	µg/L	1	<5↑	<5↑
Vanadium, V	µg/L	1	<5↑	<5↑
Zinc, Zn	µg/L	5	15000	6200

Mercury (dissolved) in Water Method: AN311(Perth)/AN312 Tested: 25/7/2019

Mercury µg/L 0.05 0.11 0.21	Mercury µg/L 0.05 0.11 0.21
-----------------------------	-----------------------------

PE136602 R1

	Sampl Sam Sam	e Number ple Matrix ple Name	PE136602.003 Water ARD_004_1	PE136602.004 Water ARD_005_1						
Parameter	Units	LOR								
pH in water Method: AN101 Tested: 24/7/2019										
pH**	pH Units	0.1	8.1	4.0						
Conductivity and TDS by Calculation - Water Method	I: AN106 Tes	ted: 24/7/2	2019							
Conductivity @ 25 C	μS/cm	2	9500	16000						
Chloride by Discrete Analyser in Water Method: AN274 Tested: 30/7/2019										
Chloride, Cl	mg/L	1	2600	5100						
Sulfate in water Method: AN275 Tested: 30/7/2019										
Sulfate, SO4	mg/L	1	740	720						
Fluoride by Ion Selective Electrode in Water Method	: AN141 Test	ed: 25/7/2	019							
Fluoride by ISE	mg/L	0.1	0.5							
Alkalinity Method: AN135 Tested: 24/7/2019										
Total Alkalinity as CaCO3	mg/L	1	120	-						
Acidity and Free CO2 Method: AN140 Tested: 25/7	/2019									
Acidity to pH 8.3	mg CaCO3/L	1	-	88						
Metals in Water (Dissolved) by ICPOES Method: AN	320 Tested: 2	25/7/2019								
Phosphorus, P	µg/L	50	<50	<50						
Silicon, Si	µg/L	20	7300	16000						
Sulfur, S	µg/L	100	270000	270000						
Cations in Water (Dissolved) by ICPOES Method: AN	N020/AN320	Tested: 2	5/7/2019							
Calcium, Ca	µg/L	10	97000	43000						
Magnesium, Mg	µg/L	10	120000	270000						
Potassium, K	µg/L	50	27000	27000						
Sodium, Na	µg/L	50	1600000	2700000						

PE136602 R1

	Sam	ple Number	PE136602.003	PE136602.004		
	Sa	mple Matrix		Water		
	00		AND_004_1	AND_005_1		
Parameter	Units	LOR				
Trace Metals (Dissolved) in Water by ICPMS Method	: AN318 Tes	sted: 25/7/2	019			
Aluminium, Al	µg/L	5	37	7600		
Antimony, Sb	µg/L	1	<5↑	<5↑		
Arsenic, As	µg/L	1	<5↑	5		
Barium, Ba	µg/L	0.2	29	57		
Bismuth, Bi	µg/L	1	<5↑	<5↑		
Boron, B	µg/L	5	3400	2300		
Cadmium, Cd	µg/L	0.1	<0.5↑	<0.5↑		
Chromium, Cr	µg/L	1	<5↑	7		
Cobalt, Co	µg/L	1	<5↑	140		
Copper, Cu	µg/L	1	6	150		
Iron, Fe	µg/L	5	<25↑	83		
Lead, Pb	µg/L	1	<5↑	18		
Manganese, Mn	µg/L	1	11	910		
Molybdenum, Mo	µg/L	0.5	7.7	<2.5↑		
Nickel, Ni	µg/L	1	100	140		
Selenium, Se	µg/L	1	7	<5↑		
Silver, Ag	µg/L	1	<5↑	<5↑		
Strontium, Sr	µg/L	1	1900	1300		
Thallium, Tl	µg/L	1	<5↑	<5↑		
Thorium, Th	µg/L	1	<5↑	<5↑		
Tin, Sn	µg/L	1	<5↑	<5↑		
Titanium, Ti	µg/L	1	<5↑	<5↑		
Uranium, U	µg/L	1	<5↑	<5↑		
Vanadium, V	µg/L	1	5	<5↑		
Zinc, Zn	μg/L	5	<25↑	4800		

Mercury (dissolved) in Water Method: AN311(Perth)/AN312 Tested: 25/7/2019

Mercury

	Sampl Sam Sam	e Number ple Matrix ple Name	PE136602.005 Water ARD_006_1						
Parameter	Units	LOR							
pH in water Method: AN101 Tested: 24/7/2019									
pH**	pH Units	0.1	3.7						
Conductivity and TDS by Calculation - Water Method	d: AN106 Tes	ted: 24/7/2	2019						
Conductivity @ 25 C	µS/cm	2	21000						
Chloride by Discrete Analyser in Water Method: AN2	74 Tested: 3	0/7/2019							
Chloride, Cl	mg/L	1	6500						
Sulfate in water Method: AN275 Tested: 30/7/2019									
Sulfate, SO4	mg/L	1	1300						
Fluoride by Ion Selective Electrode in Water Method	: AN141 Test	ed: 25/7/2	019						
Fluoride by ISE	mg/L	0.1	1.0						
Alkalinity Method: AN135 Tested: 24/7/2019	1								
Total Alkalinity as CaCO3	mg/L	1	-						
Acidity and Free CO2 Method: AN140 Tested: 25/7	//2019								
Acidity to pH 8.3	mg CaCO3/L	1	91						
Metals in Water (Dissolved) by ICPOES Method: AN320 Tested: 25/7/2019									
Phosphorus, P	µg/L	50	<250↑						
Silicon, Si	µg/L	20	20000						
Sulfur, S	µg/L	100	510000						
Cations in Water (Dissolved) by ICPOES Method: Al	N020/AN320	Tested: 25	5/7/2019						
Calcium, Ca	µg/L	10	130000						
Magnesium, Mg	µg/L	10	370000						
Potassium, K	μg/L	50	41000						

µg/L

50

3500000

Sodium, Na

	Samp San San	le Number nple Matrix nple Name	Water ARD_006_1		
Parameter	Units	LOR			
Trace Metals (Dissolved) in Water by ICPMS Metho	d: AN318 Test	ed: 25/7/2	019		
Aluminium, Al	µg/L	5	8800		
Antimony, Sb	µg/L	1	<5↑		
Arsenic, As	µg/L	1	<5↑		
Barium, Ba	µg/L	0.2	55		
Bismuth, Bi	µg/L	1	<5↑		
Boron, B	µg/L	5	4600		
Cadmium, Cd	µg/L	0.1	<0.5↑		
Chromium, Cr	µg/L	1	11		
Cobalt, Co	µg/L	1	280		
Copper, Cu	µg/L	1	310		
Iron, Fe	µg/L	5	140		
Lead, Pb	µg/L	1	19		
Manganese, Mn	µg/L	1	940		
Molybdenum, Mo	µg/L	0.5	<2.5↑		
Nickel, Ni	µg/L	1	320		
Selenium, Se	µg/L	1	<5↑		
Silver, Ag	µg/L	1	<5↑		
Strontium, Sr	µg/L	1	3100		
Thallium, Tl	µg/L	1	<5↑		
Thorium, Th	µg/L	1	<5↑		
Tin, Sn	μg/L	1	<5↑		
Titanium, Ti	μg/L	1	<5↑		
Uranium, U	µg/L	1	<5↑		
Vanadium, V	µg/L	1	<5↑		
Zinc, Zn	µg/L	5	7200		

Mercury (dissolved) in Water Method: AN311(Perth)/AN312 Tested: 25/7/2019

Mercury	µg/L	0.05	0.22

QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Acidity and Free CO2 Method: ME-(AU)-[ENV]AN140

Parameter	QC Reference	Units	LOR	MB	DUP %RPD
Acidity to pH 8.3	LB162137	mg CaCO3/L	1	<1	1 - 22%

Alkalinity Method: ME-(AU)-[ENV]AN135

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Total Alkalinity as CaCO3	LB162127	mg/L	1	<1		97%
	LB162174	mg/L	1	<1	2%	98%

Cations in Water (Dissolved) by ICPOES Method: ME-(AU)-[ENV]AN020/AN320

Parameter	QC	Units	LOR	MB	DUP %RPD
	Reference				
Calcium, Ca	LB162037	µg/L	10	<0	0%
Magnesium, Mg	LB162037	µg/L	10	<10	0%
Potassium, K	LB162037	µg/L	50	<0	144%
Sodium, Na	LB162037	µg/L	50	<0	66%

Chloride by Discrete Analyser in Water Method: ME-(AU)-[ENV]AN274

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Chloride, Cl	LB162207	mg/L	1	<1	0 - 3%	96 - 97%	83 - 91%

Conductivity and TDS by Calculation - Water Method: ME-(AU)-[ENV]AN106

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Conductivity @ 25 C	LB162128	µS/cm	2	<2	0%	102%
	LB162175	µS/cm	2	<2	0%	102 - 103%

Fluoride by Ion Selective Electrode in Water Method: ME-(AU)-[ENV]AN141

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Fluoride by ISE	LB162038	mg/L	0.1	<0.1	0 - 4%	98 - 103%	93 - 105%

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Mercury	LB162057	µg/L	0.05	<0.05	0 - 25%	99 - 104%	88 - 104%

Metals in Water (Dissolved) by ICPOES Method: ME-(AU)-[ENV]AN320

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Phosphorus, P	LB162033	µg/L	50	<0		95%
Silicon, Si	LB162033	µg/L	20	<0	3%	100%
Sulfur, S	LB162033	µg/L	100	<0		98%

pH in water Method: ME-(AU)-[ENV]AN101

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
pH**	LB162128	pH Units	0.1	5.2 - 5.6		100 - 101%
	LB162175	pH Units	0.1	5.2 - 5.5	0 - 1%	100 - 101%

Sulfate in water Method: ME-(AU)-[ENV]AN275

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Sulfate, SO4	LB162207	mg/L	1	<1	0 - 2%	101 - 105%	97 - 99%

Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Aluminium, Al	LB162029	µg/L	5	<5	4 - 9%	87%	
Antimony, Sb	LB162029	µg/L	1	<1	0%	89%	95%
Arsenic, As	LB162029	µg/L	1	<1	0 - 2%	114%	108%
Barium, Ba	LB162029	µg/L	0.2	<1.0	0%	100%	
Bismuth, Bi	LB162029	µg/L	1	<1	0%	99%	
Boron, B	LB162029	µg/L	5	<5	0%	112%	21%
Cadmium, Cd	LB162029	µg/L	0.1	<0.1	0%	110%	105%
Chromium, Cr	LB162029	µg/L	1	<1	1%	98%	100%
Cobalt, Co	LB162029	µg/L	1	<1	0%	100%	100%
Copper, Cu	LB162029	µg/L	1	<1	0 - 2%	108%	104%
Iron, Fe	LB162029	µg/L	5	<5	0 - 4%	88%	98%
Lead, Pb	LB162029	µg/L	1	<1	0 - 1%	103%	102%
Manganese, Mn	LB162029	µg/L	1	<1	0 - 1%	99%	100%
Molybdenum, Mo	LB162029	µg/L	0.5	<1.0	0 - 7%	99%	
Nickel, Ni	LB162029	µg/L	1	<1	0 - 1%	106%	97%
Selenium, Se	LB162029	µg/L	1	<1	0%	96%	127%
Silver, Ag	LB162029	µg/L	1	<1	0%	93%	
Strontium, Sr	LB162029	µg/L	1	<1	0 - 2%	86%	
Thallium, TI	LB162029	µg/L	1	<1	0%	101%	102%
Thorium, Th	LB162029	µg/L	1	<1	0%	93%	
Tin, Sn	LB162029	µg/L	1	<1	0%	96%	
Titanium, Ti	LB162029	µg/L	1	<1	0 - 11%	94%	
Uranium, U	LB162029	µg/L	1	<1	0%	89%	
Vanadium, V	LB162029	µg/L	1	<1	0 - 5%	99%	
Zinc, Zn	LB162029	µg/L	5	<5	0 - 1%	118%	109%

METHOD SUMMARY

— METHOD ————	METHODOLOGY SUMMARY
AN020/AN320 LL	Dissolved Cations Low LOR by ICP-OES: Method is as per routine ICP OES method reporting a variation to the method being lower limit of reporting (LOR) for selected cations as validated by the site. Referenced to APHA 3120B.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA 2510 B.
AN106	Salinity may be calculated in terms of NaCI from the sample conductivity. This assumes all soluble salts present, measured by the conductivity, are present as NaCI.
AN135	Alkalinity (and forms of) by Titration: The sample is titrated with standard acid to pH 8.3 (P titre) and pH 4.5 (T titre) and permanent and/or total alkalinity calculated. The results are expressed as equivalents of calcium carbonate or recalculated as bicarbonate, carbonate and hydroxide. Reference APHA 2320. Internal Reference AN135
AN140	Acidity by Titration: The water sample is titrated with sodium hydroxide to designated pH end point. In a sample containing only carbon dioxide, bicarbonates and carbonates, titration to pH 8.3 at 25°C corresponds to stoichiometric neutralisation of carbonic acid to bicarbonate. Method reference APHA 2310 B.
AN141	Determination of Fluoride by ISE: A fluoride ion selective electrode and reference electrode combination, in the presence of a pH/complexation buffer, is used to determine the fluoride concentration. The electrode millivolt response is measured logarithmically against fluoride concentration. Reference APHA F- C.
AN274	Chloride by Aquakem DA: Chloride reacts with mercuric thiocyanate forming a mercuric chloride complex. In the presence of ferric iron, highly coloured ferric thiocyanate is formed which is proportional to the chloride concentration. Reference APHA 4500CI-
AN275	sulfate by Aquakem DA: sulfate is precipitated in an acidic medium with barium chloride. The resulting turbidity is measured photometrically at 405nm and compared with standard calibration solutions to determine the sulfate concentration in the sample. Reference APHA 4500-SO42 Internal reference AN275.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN320	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.

METHOD SUMMARY

METHOD
 Calculation

METHODOLOGY SUMMARY

Free and Total Carbon Dioxide may be calculated using alkalinity forms only when the samples TDS is <500mg/L. If TDS is >500mg/L free or total carbon dioxide cannot be reported . APHA4500CO2 D.

FOOTNOTES _

IS	Insufficient sample for analysis.
LNR	Sample listed, but not received.

- NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- LOR Limit of Reporting
- ↑↓ Raised or Lowered Limit of Reporting
- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance
 - The sample was not analysed for this analyte
- NVL Not Validated

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

- Note that in terms of units of radioactivity:
 - a. 1 Bq is equivalent to 27 pCi
 - b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au.pv.sgsvr/en-gb/environment</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Graeme Campbell	Manager	Marjana Siljanoska
Client	Graeme Campbell & Associates Pty Ltd	Laboratory	SGS Perth Environmental
Address	PO Box 247 Bridgetown WA 6255	Address	28 Reid Rd Perth Airport WA 6105
Telephone	0897 612 829	Telephone	(08) 9373 3500
Facsimile	0897 612 830	Facsimile	(08) 9373 3556
Email	gca@wn.com.au	Email	au.environmental.perth@sgs.com
Project	GCA Job No. 1901/1	SGS Reference	PE136602A R0
Order Number	GCA Job No. 1901/1	Date Received	01 Aug 2019
Samples	5	Date Reported	13 Aug 2019

COMMENTS .

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(898/20210).

SIGNATORIES _

Maryla-a

Mary Ann Ola-A Inorganics Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

28 Reid Rd Perth Airp PO Box 32 Welshpoo Australia t +61 8 9373 3500 Australia f +61 8 9373 3556

www.sgs.com.au

13-August-2019

PE136602A R0

	Sample Number Sample Matrix Sample Name		PE136602A.001 Water ARD_001_1	PE136602A.002 Water ARD_002_1
Parameter	Units	LOR		
Hexavalent Chromium in water by Discrete Analyser	Method: AN283	Tested	7/8/2019	
Hexavalent Chromium, Cr6+	mg/L	0.001	<0.001	<0.001
Describes Office has Annaleses Discussion Analysis and Math			2040	

Reactive Silica, Si	mg/L	0.05	13	20

PE136602A R0

	Sample Number Sample Matrix Sample Name		PE136602A.003 Water ARD_004_1	PE136602A.004 Water ARD_005_1
Parameter	Units	LOR		
Hexavalent Chromium in water by Discrete Analyser	Method: AN283	Tested	: 7/8/2019	
Hexavalent Chromium, Cr6+	mg/L	0.001	<0.001	<0.001
Departies Office has American Discussion American Matth			20.40	

	I			1
Reactive Silica, Si	mg/L	0.05	7.6	17

	Sample Number Sample Matrix Sample Name		PE136602A.005 Water ARD_006_1
Parameter	Units	LOR	
Hexavalent Chromium in water by Discrete Analyser	Method: AN283	Tested	: 7/8/2019
Hexavalent Chromium, Cr6+	mg/L	0.001	<0.001
Reactive Silica by Aquakem Discrete Analyser Meth	od: AN270 Tes	sted: 12/8/	2019

Reactive Silica, Si	mg/L	0.05	20

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : *the absolute difference of the two results divided by the average of the two results as a percentage*. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Hexavalent Chromium in water by Discrete Analyser Method: ME-(AU)-[ENV]AN283

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Hexavalent Chromium, Cr6+	LB162474	mg/L	0.001	<0.001	0%	NA	NA

Reactive Silica by Aquakem Discrete Analyser Method: ME-(AU)-[ENV]AN270

Parameter	QC	Units	LOR	DUP %RPD	LCS	MS
	Reference				%Recovery	%Recovery
Reactive Silica, Si	LB162619	mg/L	0.05	0 - 1%	100%	86%

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN270	Reactive forms of silicon in acid solution below pH 2 react with ammonium molybdate ions to form a yellow silicomolybdate which is then reduced with ascorbic acid to produce a blue silicomolybdate complex. Oxalic acid is added to destroy any molybdophosphoric acid. Colourimetric determination by Aquakem Discrete Analyser.
AN283	Hexavalent Chromium via Discrete Analyser: Soluble hexavalent chromium forms a red/violet colour with diphenylcarbazide in acidic solution. This procedure is very sensitive and nearly specific for Cr6+. If total chromium is also measured the trivalent form of chromium Cr3+ can be calculated from the difference (Total Cr - Cr6+). Reference APHA3500CrB.

FOOTNOTES _

IS	Insufficient sample for analysis.
LNR	Sample listed, but not received.
*	NATA accreditation does not cover the

- performance of this service.
- Indicative data, theoretical holding time exceeded.
- LOR Limit of Reporting
- Raised or Lowered Limit of Reporting î↓
- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance The sample was not analysed for this analyte
 - Not Validated
- NVI

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

- Note that in terms of units of radioactivity:
 - a. 1 Bq is equivalent to 27 pCi
 - 37 MBq is equivalent to 1 mCi b.

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sqs.com.au.pv.sqsvr/en-ab/environment.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.

Accredited for compliance with ISO/IEC 17025

Dr G Campbell GRAEME CAMPBELL and ASSOCIATES PTY LTD PO Box 247 BRIDGETOWN WA 6255

JOB INFORMATION

JOB CODE	143/1906246
No. of SAMPLES	16
CLIENT O/N	GCA 1901/1
PROJECT	MEDCALF
STATE	Soils
DATE RECEIVED	23/04/2019
DATE COMPLETED	25/05/2019

LEGEND

>

- N/R = Sample Not Received
- * = Result Checked
- () = Result still to come
- I/S = Insufficient Sample for Analysis
- E6 = Result X 1,000,000
- UA = Unable to Assay
 - = Value beyond Limit of Method

The determination of <u>effective Cation Exchange Capacity (eCEC)</u>, and reporting of results, as given below, correspond to the requirements specified by GCA for the testing of samples of soils and mine waste (regolith) materials. These determinations are based on classical soil science procedures developed for calcareous and non-calcareous systems, and where the cation-exchange properties are dominated by permanent-charge clay minerals (cf. variable-charge sesquioxides and soil humic materials).

The samples were received as -2mm fractions from dry-sieving. For samples ARD_022, ARD_025 and ARD_026 pulps (nominal -75 μ m) were also tested.

1.0 Prewashing step using organic solvent for removal of soluble salts

A prewashing step is carried out for all samples to remove soluble salts using an organic solvent in which loss of dispersed / peptised clays, induced by dilution during washing, is restricted / prevented. Unwanted hydrolysis-related alteration of the initial cation suite on the exchange complex is also thereby minimised.

1g of sample is weighed into a centrifuge tube and pre-washed with 2×12.5 ml 10% (v/v) deionised ethylene glycol in 90% (v/v) ethanol which has been previously deionised by passing through Amberlite resin.

After the centrifugation, the centrifugate / supernatant may contain dispersed colloids (clays / sesquioxides). If this is the case the addition of a few drops of PVA may be necessary to clarify the supernatant. The PVA aqueous solution is 0.05% (w/v) polyvinyl alcohol. No additions.

2.0 Extraction of Exchangeable Ca, Mg, K, and Na using 1 M-NH₄Cl buffered solutions

Cationic forms of Ca, Mg, K, and Na exchangeable with 1 M-NH₄Cl buffered solutions are determined at either pH 8.5 for calcareous samples, or pH 7 for non-calcareous samples. For calcareous samples, the 1 M-NH₄Cl solution is an alcoholic solution: the combination of the ethanol-

aqueous solvent, and the pH buffered at 8.5 (cf. 7), strongly suppresses dissolution of calcites, dolomites, etc., and thereby miminises <u>both</u> overestimation of eCEC, <u>and</u> underestimation of ESP.

A Vortex mixer is used to ensure thorough resuspension of the 'soil-plug' at the bottom of the centrifuge tube during the step-wise extraction process.

15 Davison Street, Maddington WA 6109 PO Box 144, Gosnells WA 6990 T +61 8 9251 8100 I F +61 8 9251 8110 ABN 32 008 787 237 www.intertek.com www.genalysis.com.au

3.0 Extraction step for Calcareous samples

GLS method AmCI was used as follows for the calcareous samples: no calcareous samples

4.0 Extraction step for Non-calcareous samples

GLS method AmCl7 was used on all the samples, being non-calcareous: ARD_022 pulp, ARD_025 pulp, ARD_026 pulp, ARD_022 -2mm, ARD_025 -2mm, ARD_026 -2mm, ARD_008 -2mm, ARD_015 -2mm, ARD_018 -2mm, ARD_019 -2mm and ARD_010 -2mm.

After decanting following completion of the 2nd pre-wash, the residue in the centrifuge tube is subjected to 2 x 30-minute extractions via end-over-end tumbling at approx. 10 rpm. Each extraction uses 20 ml of 1 M-NH₄Cl buffered at pH 7.0 using ammonia solution 28 % (w/w). At the completion of each extraction, the suspension is centrifuged and the supernatant decanted and collected into a communal extract. The final communal extract is brought to 50 ml with 4 M-HCl, and analysed for Ca, Mg, K and Na by OES.

Reference:

Based on procedure 15B2 in "Soil Chemical Methods – Australasia", G.E. Rayment & D.J. Lyons, 2011, CSIRO Publishing.

<u>Results</u>:

Element	eCEC	Na	Mg	Са	К
Method		exch	exch	exch	exch
		ESP			
Units	cmol(+)/kg	%	%	%	%
ARD_022 pulp	5	31	37	30	2
ARD_025 pulp	8	45	35	20	0
ARD_026 pulp	12	51	30	16	2
ARD_022 -2mm	5	49	41	10	0
ARD_025 -2mm	9	58	33	8	1
ARD_026 -2mm	10	64	26	9	1
ARD_008 -2mm	8	65	27	4	4
ARD_015 -2mm	7	37	49	14	0
ARD_018 -2mm	22	53	42	2	4
CH: ARD_018 -2mm	22	53	42	2	3
ARD_019 -2mm	50	47	46	4	3
ARD_010 -2mm	21	62	33	2	3
ASS1511-3	10	2	15	72	11

5.0 Significant figures and rounding-off

The eCEC and 'exchangeable percentage' values are expressed to no more than 2 significant figures. The exchangeable percentage of the individual 'base-cations' (as a percentage of the eCEC value) is rounded to the nearest integral value (e.g. 4%) or expressed as <1%, as appropriate. With such rounding-off for practical purposes, the sum of the respective exchangeable percentage may therefore not always equate to 100%.

6.0 Total Exchangeable Acidity and Exchangeable Aluminium

Total Exchange Acidity and Exchangeable Aluminium were determined on the supplied -2mm fractions, and based on Method 15G1 in Rayment and Lyons (2011).

Extractions were carried out on the following soil:leach ratio as per reference method 15G1

• 8 gms of sample, 80ml 1M KCl, dilution factor 1:10 extract, 1 hr agitation (bottle-rolling) at room temperature

Following filtration the extracts were titrated with dilute NaOH to a pH = 8.0 end-point to determine the Total

GLS Job Code 143.0/1906246

Exchange Acidity, expressed as cmol(+)/Kg, corresponding to cmol H+ per Kg.

In place of determining the contribution to the Total Exchange Acidity from soluble-Al forms via treatment with NaF (as per 15G1), the Al concentration in the filtered extracts was measured by ICPOES. Calculations of exchangeable aluminium assumes all Al present as Al3+. Exchangeable aluminium is expressed in units of cmol(+)/Kg.

Gravimetric water content (GWC) measured on each sample. Intertek Genalysis codes: MPL_W022

Measurement of exchange acidity is not part of the NATA scope of accreditation

Reference:

Based on procedure 15G1 Soil Chemical Methods – Australasia, Rayment & Lyons, CSIRO 2011

Element	рН	Al	Al exch	Total Exch acidity*	GWC
Units	initial	mg/kg	cmol(+)/Kg	cmol(+)/Kg	%
	DF10	DF10			
ARD001	4.6	10	0.11	0.34	1.29
ARD002	3.7	108	1.20	1.79	1.39
CH: ARD002	4.0	109	1.21	1.81	1.39
ARD003	4.4	4	0.04	0.57	1.23
ARD005	4.2	32	0.36	1.04	1.34
ARD006	4.0	24	0.27	0.94	1.29

*expressed as Oven Dry basis

NATA ENDORSED DOCUMENT

Company Accreditation Number 3244

The contents of this report have been prepared in accordance with the terms of NATA accreditation and as such should only be reproduced in full.

Intertek Genalysis Signatory:

Huong Pham

Date: 11/06/2019

Emerson Dispersion Testing

• Testing is based on Emerson (2002).

Reference:

• Emerson WW, 2002, "Emerson Dispersion Test", Chapter 13, pp. 190-0199 in McKenzie N, Coughlan K, and Cresswell H (eds), "Soil Physical Measurement and Interpretation for Land Evaluation", CSIRO Publishing, Collingwood.

1.0 TESTING OF DRY 'SAPROLITE-AGGREGATES'

• The following samples were tested as dry 'saprolite-aggregates' which 'survived' the original drilling, and subsequent 'coarse-crushing' during sample preparation for testing. The 'saprolite-aggregates' were hand-picked from the +2 mm fraction obstained via dry sieving.

• ARD_019

• ARD_020 After approx. 1 hr

• ARD_018 After approx. 1 hr

• ARD_010 After approx. 1 hr

After approx. 24 hrs

After approx. 24 hrs

After approx. 24 hrs

After approx. 24 hrs

• <u>Important Observation</u>: Immediately following immersion in deionised-water, the aggregates for the above saprolite samples <u>did not slake in the normal manner for soil aggregates</u> (i.e. break-down erratically with a 'flying-apart' action). Instead, the tested 'saprolite-aggregates' instantly expanded both laterally and vertically (i.e. **rapid '3D-swelling'**). Clay dispersion then ensued over the course of 24 hrs with collapse of the 'swollen-masses' initially.

2.0 TESTING OF 'SOIL-BALLS' REMOULDED FROM WET-SHEARED 'FINE-EARTH' (-2 mm) FRACTIONS

Notes:

1. Testing based on Emerson (2002).

2. Testing performed on -2 mm fraction from dry-sieving.

3. The testing procedure employed was as follows. Approx. 50-100 gms of the air-dry solids is moistened with deionised-water and kneaded into a 'soil-bolus'.

4. The wet-shearing was undertaken using a stainless-steel-spatula, and a plastic bowl. Some physical effort was expended to repetitively 'scrape-and-smear' the 'wet-sheared-soil' over the walls of the plastic bowl using the spatula.

5. 'Soil-balls' around 3-5mm in diameter were then moulded by hand for immersion in deionised-water.

6. Photographs below correspond to an ageing period of 1 day in a CT-room at 20 oC.

7. Subjecting the regolith samples to wet-shearing action simulates the mechanical stresses, and ensuing breakdown of

of short-range bonding between clay particles, applicable to soil-aggregates impacted by rain drops at the soil / ground surface (e.g. Wuddivira et al. 2009; Emerson 1991). In the case of waste-regoliths (e.g. saprolites), related breakdown of aggregates and clay dispersion with the onset of tunnel-erosion effects, occur where <u>gap-graded</u>, <u>voidy profiles of chunky rock</u> are used for for armouring of WRD side-slopes. Such pervious rip-rap mantles allow rapid rainfall infiltration and ensuing erosive saturated-flow at the (inclined) saprolite/rock-interface (i.e. physically unstable decommissioned WRD). References:

• Emerson WW, 1991, "Structural Decline of Soils, Assessment and Prevention", *Australian Journal of Soil Research*, 29:905-921

• Emerson WW, 2002, "Emerson Dispersion Test", Chapter 13, pp. 190-0199 in McKenzie N, Coughlan K, and

Cresswell H (eds), "Soil Physical Measurement and Interpretation for Land Evaluation", CSIRO Publishing, Collingwood.

• Wuddivira MN, Stone RJ, and Ekwue EI, 2009, "Clay, Organic Matter, and Wetting Effects on Splash Detachment and

Aggregate Breakdown Under Intense Rainfall", Soil Science Society of America Journal, 73:226-232

3.0 TESTING BOTH UNLEACHED AND LEACHED SAMPLES

In addition to assessing the clay-dispersion tendency of the -2 mm fractions derived from dry-sieving, dispersion testing was also undertaken on the -2 mm fractions folloowing leaching with deionised-water to elute soluble-salts (chiefly NaCl).
 The pre-leaching treatment was conducted in the following way.

Approx. 100 g of air-dry solids was placed in a Buechner funnel on top of a Whatman No. 2 'filter-paper. 200 mL of deionised-water was then added and the resulting 'soil-mud/slurry' stirred gently using a rubber policeman attached to a glass-rod. Stirring in this way reduced a 'run-down' in salinity to unrealistically low levels in the latter stages of leaching. 3. The geometry of the leaching-test arrangement broadly corresponds to a 'surface-soil-skin' of around 20-30 mm in thickness that is fully leached by a storm-depth of around 20-30 mm.

4. Following completion of leaching the Buechner funnels were placed in an oven at 40 oC to partially dewater the leached samples. The resulting sticky soil/pulp samples were then worked-up into a 'soil-bolus', as above, before being 'wet-sheared' using the stainless-steel spatula.

5. 'Soil-balls' around 3-5mm in diameter were moulded by hand for immersion in deionised-water, as before.

Setup for Leaching of Waste-Regolith Samples

4.0 RESPONSE WHEN 'SOIL-BALLS' IMMERSED IN DEIONISED-WATER

4.1 Mottled-Zone

• ARD_002

• ARD_003

• ARD_004

• ARD_005

• ARD 006

4.2 Saprolite-ZoneARD 008

• ARD_015

ARD_015

5.0 PEPTISATION / FLOCCULATION RESPONSES FOR SAMPLES WHERE 'SOIL-BALLS' DID NOT DISPERSE WHEN IMMERSED IN DEIONISED-WATER

1. This testing was undertaken for samples ARD_001, ARD_002, ARD_003, ARD_005, ARD_006, and ARD_008.

2. None of these samples were calcareous, and none were gypsiferous. Therefore, Emerson Class Number 4 does not apply.

3. 20 gms of the -2 mm fraction was mixed with 100 mL of deionised-water, and vigorously agitated via a flask-shaker for

10 minutes. The agitated suspensions were then left to 'still-stand' for 15 minutes before assessing peptisation or flocculation.

4. Both the initial unleached and leached samples (see above) were tested.

6.0 ASSIGNMENT OF EMERSON CLASS NUMBER

	Emerson Cl	Emerson Class Number				
	Unleached	Leached				
Mottled-Zone						
• ARD_001	6	6				
• ARD_002	6	5				
• ARD_003	6	6				
• ARD_004	3b	3 a				
• ARD_005	6	5				
• ARD_006	6	6				

Saprolite-Zone

• ARD_010	2	
• ARD_018	1	
• ARD_019	1	
• ARD_020	1	
• ARD_008	6	6
• ARD_015	6	

Dr GD Campbell 15th June 2019

XRD Report – Quantitative Mineralogy of Pulped Waste-Bedrock Sample ARD_022, GCA Job No 1901/1

Mark D Raven, Peter G Self and Rodrigo Gomez-Camacho Report No: D4608

May 2019 Graeme Campbell

Commercial-in-confidence

Citation

Raven, M.D., Self, P.G. and Gomez-Camacho, R. (2019) XRD Report – Quantitative Mineralogy of Pulped Waste-Bedrock Sample ARD_022, GCA Job No 1901/1. CSIRO, Australia.

Copyright and disclaimer

© 2019 CSIRO To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO.

Important disclaimer

CSIRO advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, CSIRO (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it.

Introduction

One pulped bedrock sample labelled ARD_022 was submitted by Graeme Campbell for quantitative mineralogy by X-ray diffraction (XRD) analysis.

Sample Preparation

Approximately 1.5g of the as-received samples were ground for 10 minutes in a McCrone micronizing mill under ethanol. The resulting slurries were oven dried at 60°C then thoroughly mixed in an agate mortar and pestle before being lightly back pressed into stainless steel sample holders for X-ray diffraction analysis.

The XRD pattern of the micronized sample showed a broad XRD peak which indicated the presence of a partially dehydrated swelling clay (i.e. smectite) so to confirm this the sample was calcium saturated. This involved dispersing the sample in a 1M CaCl₂ solution, centrifuging at 5150g for 10 minutes, calcium saturating a second time, washing with water then ethanol (centrifuging at 5150g for 10 minutes after each step) before oven drying at 60°C. The dried material was thoroughly mixed in an agate mortar and pestle before being lightly back pressed into a stainless steel sample holder for X-ray diffraction analysis.

X-ray Diffraction Analysis

XRD patterns were recorded with a PANalytical X'Pert Pro Multi-purpose Diffractometer using Fe filtered Co K α radiation, automatic divergence slit, 2° anti-scatter slit and fast X'Celerator Si strip detector. The diffraction patterns were recorded from 3 to 80° in steps of 0.017° 2 theta with a 0.5 second counting time per step for an overall counting time of approximately 35 minutes.

Qualitative analysis was performed on the XRD data using in-house XPLOT and HighScore Plus (from PANalytical) search/match software. Quantitative analysis was performed on the XRD data using the commercial package SIROQUANT from Sietronics Pty Ltd. The results are normalised to 100%, and hence do not include estimates of unidentified or amorphous materials.

Results

Preliminary examination of the XRD pattern from the micronized, as received sample showed the presence of a very weak broad peak at approximately 14Å (~7.4° 2-theta) indicating possible swelling clays (i.e. smectite). After calcium saturation the peak intensified and shifted to ~15Å (~6.8° 2-theta, see Figure 1) confirming smectite.

Quantitative XRD analysis results are shown in Table 1 for the calcium saturated bulk samples. The XRD patterns for the bulk as received and bulk calcium saturated samples are shown in Figure 2 and 3 respectively.

The sample is composed of dominant amphibole (possibly actinolite), sub-dominant anorthite, minor quartz and trace smectite and kaolin.

Table 1 Quantitative XRD analysis	(wt.%) of the micronized,	calcium saturated	bulk sample (oven
dried 60°C basis)			

CSIRO ID	Client ID	Quartz	Anorthite	Amphibole	Smectite	Kaolin
52797	ARD_022	5	30	61	2	2

Figure 1 Comparison of the XRD pattern of ARD_022, bulk micronized, as received (black pattern) and after calcium saturation (red pattern) showing the peak at ~7.4° 2-theta shifting to ~6.8° 2-theta (Co Kα radiation)

52797. ARD_022. Micronized. Ca saturated.

Figure 3 XRD pattern of ARD_022, bulk micronized, calcium saturated sample (Co Ka radiation)

CONTACT US

- t 1300 363 400
- +61 3 9545 2176
- e enquiries@csiro.au
- w www.csiro.au

AT CSIRO, WE DO THE EXTRAORDINARY EVERY DAY

We innovate for tomorrow and help improve today – for our customers, all Australians and the world.

Our innovations contribute billions of dollars to the Australian economy every year. As the largest patent holder in the nation, our vast wealth of intellectual property has led to more than 150 spin-off companies.

With more than 5,000 experts and a burning desire to get things done, we are Australia's catalyst for innovation.

CSIRO. WE IMAGINE. WE COLLABORATE. WE INNOVATE.

FOR FURTHER INFORMATION

CSIRO Land and Water

- Mark Raven
- t +61 8 8303 8497
- e mark.raven@csiro.au
- $\boldsymbol{w} \text{ www.csiro.au}$